Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
On the solutions of quadratic Diophantine equations II
Manabu MurataTakashi Yoshinaga
著者情報
ジャーナル フリー

2018 年 70 巻 3 号 p. 895-919

詳細
抄録

A quantity concerning the solutions of a quadratic Diophantine equation in 𝑛 variables coincides with a mass of a special orthogonal group of a quadratic form in dimension 𝑛−1, via the mass formula due to Shimura. We show an explicit formula for the quantity, assuming the maximality of a lattice in the (𝑛−1)-dimensional quadratic space. The quantity is determined by the computation of a group index and of the mass of the genus of maximal lattices in that quadratic space. As applications of the result, we give the number of primitive solutions for the sum of 𝑛 squares with 6 or 8 and also the quantity in question for the sum of 10 squares.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2018 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top