Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Gluing construction of compact Spin(7)-manifolds
Mamoru DoiNaoto Yotsutani
著者情報
ジャーナル フリー

2019 年 71 巻 2 号 p. 349-382

詳細
抄録

We give a differential-geometric construction of compact manifolds with holonomy Spin(7) which is based on Joyce's second construction of compact Spin(7)-manifolds and Kovalev's gluing construction of compact 𝐺2-manifolds. We provide several examples of compact Spin(7)-manifolds, at least one of which is new. Here in this paper we need orbifold admissible pairs (\overline{𝑋}, 𝐷) consisting of a compact Kähler orbifold \overline{𝑋} with isolated singular points modelled on ℂ4/ℤ4, and a smooth anticanonical divisor 𝐷 on \overline{𝑋}. Also, we need a compatible antiholomorphic involution 𝜎 on \overline{𝑋} which fixes the singular points on \overline{𝑋} and acts freely on the anticanoncial divisor 𝐷. If two orbifold admissible pairs (\overline{𝑋}1, 𝐷1), (\overline{X}2, 𝐷2) and compatible antiholomorphic involutions 𝜎𝑖 on \overline{𝑋}𝑖 for 𝑖 = 1, 2 satisfy the gluing condition, we can glue (\overline{𝑋}1 ∖ 𝐷1)/⟨𝜎1⟩ and (\overline{𝑋}2 ∖ 𝐷2)/⟨𝜎2⟩ together to obtain a compact Riemannian 8-manifold (𝑀, 𝑔) whose holonomy group Hol(𝑔) is contained in Spin(7). Furthermore, if the \widehat{𝐴}-genus of 𝑀 equals 1, then 𝑀 is a compact Spin(7)-manifold, i.e. a compact Riemannian manifold with holonomy Spin(7).

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2019 The Mathematical Society of Japan
次の記事
feedback
Top