Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
The logarithmic derivative for point processes with equivalent Palm measures
Alexander I. BufetovAndrey V. DymovHirofumi Osada
著者情報
ジャーナル フリー

2019 年 71 巻 2 号 p. 451-469

詳細
抄録

The logarithmic derivative of a point process plays a key rôle in the general approach, due to the third author, to constructing diffusions preserving a given point process. In this paper we explicitly compute the logarithmic derivative for determinantal processes on ℝ with integrable kernels, a large class that includes all the classical processes of random matrix theory as well as processes associated with de Branges spaces. The argument uses the quasi-invariance of our processes established by the first author.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2019 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top