Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Relative stability associated to quantised extremal Kähler metrics
Yoshinori Hashimoto
著者情報
ジャーナル フリー

2019 年 71 巻 3 号 p. 861-880

詳細
抄録

We study algebro-geometric consequences of the quantised extremal Kähler metrics, introduced in the previous work of the author. We prove that the existence of quantised extremal metrics implies weak relative Chow polystability. As a consequence, we obtain asymptotic weak relative Chow polystability and relative 𝐾-semistability of extremal manifolds by using quantised extremal metrics; this gives an alternative proof of the results of Mabuchi and Stoppa–Székelyhidi. In proving them, we further provide an explicit local density formula for the equivariant Riemann–Roch theorem.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2019 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top