Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Bifurcation sets of real polynomial functions of two variables and Newton polygons
Masaharu IshikawaTat-Thang NguyenTien-Son Phạm
著者情報
ジャーナル フリー

2019 年 71 巻 4 号 p. 1201-1222

詳細
抄録

In this paper, we determine the bifurcation set of a real polynomial function of two variables for non-degenerate case in the sense of Newton polygons by using a toric compactification. We also count the number of singular phenomena at infinity, called “cleaving” and “vanishing”, in the same setting. Finally, we give an upper bound of the number of atypical values at infinity in terms of its Newton polygon. To obtain the upper bound, we apply toric modifications to the singularities at infinity successively.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2019 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top