Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Heat trace asymptotics on equiregular sub-Riemannian manifolds
Yuzuru InahamaSetsuo Taniguchi
著者情報
ジャーナル フリー

2020 年 72 巻 4 号 p. 1049-1096

詳細
抄録

We study a “div-grad type” sub-Laplacian with respect to a smooth measure and its associated heat semigroup on a compact equiregular sub-Riemannian manifold. We prove a short time asymptotic expansion of the heat trace up to any order. Our main result holds true for any smooth measure on the manifold, but it has a spectral geometric meaning when Popp's measure is considered. Our proof is probabilistic. In particular, we use Watanabe's distributional Malliavin calculus.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2020 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top