Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Finite ๐’œ-determinacy of generic homogeneous map germs in โ„‚3
Michaล‚ FarnikZbigniew JelonekMaria Aparecida Soares Ruas
Author information
JOURNAL FREE ACCESS

2021 Volume 73 Issue 1 Pages 211-220

Details
Abstract

Denote by ๐ป(๐‘‘1, ๐‘‘2, ๐‘‘3) the set of all homogeneous polynomial mappings ๐น = (๐‘“1, ๐‘“2, ๐‘“3) : โ„‚3 โ†’ โ„‚3, such that deg ๐‘“๐‘– = ๐‘‘๐‘–. We show that if gcd(๐‘‘๐‘–, ๐‘‘๐‘—) โ‰ค 2 for 1 โ‰ค ๐‘– < ๐‘— โ‰ค 3 and gcd(๐‘‘1, ๐‘‘2, ๐‘‘3) = 1, then there is a non-empty Zariski open subset ๐‘ˆ โŠ‚ ๐ป(๐‘‘1, ๐‘‘2, ๐‘‘3) such that for every mapping ๐น โˆˆ ๐‘ˆ the map germ (๐น, 0) is ๐’œ-finitely determined. Moreover, in this case we compute the number of discrete singularities (0-stable singularities) of a generic mapping (๐‘“1, ๐‘“2, ๐‘“3): โ„‚3 โ†’ โ„‚3, where deg ๐‘“๐‘– = ๐‘‘๐‘–.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2021 The Mathematical Society of Japan
Previous article Next article
feedback
Top