2021 Volume 73 Issue 1 Pages 211-220
Denote by ๐ป(๐1, ๐2, ๐3) the set of all homogeneous polynomial mappings ๐น = (๐1, ๐2, ๐3) : โ3 โ โ3, such that deg ๐๐ = ๐๐. We show that if gcd(๐๐, ๐๐) โค 2 for 1 โค ๐ < ๐ โค 3 and gcd(๐1, ๐2, ๐3) = 1, then there is a non-empty Zariski open subset ๐ โ ๐ป(๐1, ๐2, ๐3) such that for every mapping ๐น โ ๐ the map germ (๐น, 0) is ๐-finitely determined. Moreover, in this case we compute the number of discrete singularities (0-stable singularities) of a generic mapping (๐1, ๐2, ๐3): โ3 โ โ3, where deg ๐๐ = ๐๐.
This article cannot obtain the latest cited-by information.