2022 年 74 巻 3 号 p. 813-828
For any compact Riemannian surface of genus three (Σ,𝑑𝑠2) Yang and Yau proved that the product of the first eigenvalue of the Laplacian 𝜆1(𝑑𝑠2) and the area 𝐴𝑟𝑒𝑎(𝑑𝑠2) is bounded above by 24𝜋. In this paper we improve the result and we show that 𝜆1(𝑑𝑠2) 𝐴𝑟𝑒𝑎(𝑑𝑠2) ≤ 16(4 − \sqrt{7})𝜋 ≈ 21.668𝜋. About the sharpness of the bound, for the hyperbolic Klein quartic surface numerical computations give the value ≈ 21.414𝜋.
この記事は最新の被引用情報を取得できません。