Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Compactification and distance on Teichmüller space via renormalized volume
Hidetoshi Masai
著者情報
ジャーナル 認証あり

2024 年 76 巻 3 号 p. 673-712

詳細
抄録

We introduce a variant of horocompactification which takes “directions” into account. As an application, we construct a compactification of the Teichmüller spaces via the renormalized volume of quasi-Fuchsian manifolds. Although we observe that the renormalized volume itself does not give a distance, the compactification allows us to define a new distance on the Teichmüller space. We show that the translation length of pseudo-Anosov mapping classes with respect to this new distance is precisely the hyperbolic volume of their mapping tori. A similar compactification via the Weil–Petersson metric is also discussed.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2024 The Mathematical Society of Japan
次の記事
feedback
Top