Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Galois orbits in the moduli space of all triangles
Curtis T. McMullen
著者情報
ジャーナル 認証あり

2025 年 77 巻 1 号 p. 31-56

詳細
抄録

Every 𝑎 in the torus 𝐴 = ℝ3/2ℤ3 determines a unique spherical, Euclidean or hyperbolic triangle 𝑇(𝑎) with angles (𝜋 𝑎𝑖). In this paper we study the Galois orbits Gal(𝑎) of torsion points 𝑎 ∈ 𝐴, focusing on the ramification density

𝜌(𝑎) = \frac{|{ 𝑏 ∈ Gal(𝑎) : 𝑇(𝑏) is spherical }|}{|Gal(𝑎)|}.

We show that the closure \overline{𝑅} of the set of values of 𝜌(𝑎) is a countable subset of [0, 1], with 0 and 1 as isolated points. The spectral gaps at 0 and 1 lead to general finiteness statements for the classical triangle groups Δ(𝑝, 𝑞, 𝑟) ⊂ SL2(ℝ). For example, we obtain a conceptual proof, based on equidistribution, that the set of arithmetic triangle groups is finite.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2025 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top