Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Accumulation points on 3-fold canonical thresholds
Jheng-Jie Chen
Author information
JOURNAL RESTRICTED ACCESS

2025 Volume 77 Issue 2 Pages 325-343

Details
Abstract

Let π‘˜ β‰₯ 2 be a given integer. We study the set of 3-fold canonical thresholds ct(𝑋;𝑆) with \frac{1}{π‘˜} < ct(𝑋;𝑆) < \frac{1}{π‘˜βˆ’1} where 𝑆 is a β„š-Cartier prime divisor of a projective 3-fold 𝑋. Express ct(𝑋;𝑆) as the rational number \frac{π‘Ž}{π‘š} where π‘Ž (resp. π‘š) denotes the weighted discrepancy (resp. weighted multiplicity). We conclude that if π‘Ž β‰₯ 54π‘˜4, then we may choose positive integers 𝑝 and π‘ž satisfying ct(𝑋;𝑆) = \frac{π‘Ž}{π‘š} = \frac{1}{π‘˜} + \frac{π‘ž}{𝑝} and π‘ž < 6π‘˜3. As a consequence, the set of accumulation points of the set of 3-fold canonical thresholds consists of {0} βˆͺ { \frac{1}{π‘˜} }_{π‘˜βˆˆβ„€ β‰₯ 2}. Moreover, we generalize the ACC for the set of 3-fold canonical thresholds to pairs.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2025 The Mathematical Society of Japan
Next article
feedback
Top