Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Accumulation points on 3-fold canonical thresholds
Jheng-Jie Chen
Author information
JOURNAL RESTRICTED ACCESS

2025 Volume 77 Issue 2 Pages 325-343

Details
Abstract

Let ๐‘˜ โ‰ฅ 2 be a given integer. We study the set of 3-fold canonical thresholds ct(๐‘‹;๐‘†) with \frac{1}{๐‘˜} < ct(๐‘‹;๐‘†) < \frac{1}{๐‘˜โˆ’1} where ๐‘† is a โ„š-Cartier prime divisor of a projective 3-fold ๐‘‹. Express ct(๐‘‹;๐‘†) as the rational number \frac{๐‘Ž}{๐‘š} where ๐‘Ž (resp. ๐‘š) denotes the weighted discrepancy (resp. weighted multiplicity). We conclude that if ๐‘Ž โ‰ฅ 54๐‘˜4, then we may choose positive integers ๐‘ and ๐‘ž satisfying ct(๐‘‹;๐‘†) = \frac{๐‘Ž}{๐‘š} = \frac{1}{๐‘˜} + \frac{๐‘ž}{๐‘} and ๐‘ž < 6๐‘˜3. As a consequence, the set of accumulation points of the set of 3-fold canonical thresholds consists of {0} โˆช { \frac{1}{๐‘˜} }_{๐‘˜โˆˆโ„ค โ‰ฅ 2}. Moreover, we generalize the ACC for the set of 3-fold canonical thresholds to pairs.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2025 The Mathematical Society of Japan
Next article
feedback
Top