Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Polarized K3 surfaces with an automorphism of order 3 and low Picard number
Dino Festi
Author information
JOURNAL RESTRICTED ACCESS

2025 Volume 77 Issue 2 Pages 619-628

Details
Abstract

In this paper, for each ๐‘‘ > 0, we study the minimum integer โ„Ž3,2๐‘‘ โˆˆ โ„• for which there exists a complex polarized K3 surface (๐‘‹, ๐ป) of degree ๐ป2 = 2๐‘‘ and Picard number ๐œŒ(๐‘‹) := rank Pic ๐‘‹ = โ„Ž3,2๐‘‘ admitting an automorphism of order 3. We show that โ„Ž3,2 โˆˆ {4, 6} and โ„Ž3,2๐‘‘ = 2 for ๐‘‘ > 1. Analogously, we study the minimum integer โ„Ž*3,2๐‘‘ โˆˆ โ„• for which there exists a complex polarized K3 surface (๐‘‹, ๐ป) as above plus the extra condition that the automorphism acts as the identity on the Picard lattice of ๐‘‹. We show that โ„Ž*3,2๐‘‘ is equal to 2 if ๐‘‘ > 1 and equal to 6 if ๐‘‘ = 1. We provide explicit examples of K3 surfaces defined over โ„š realizing these bounds.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2025 The Mathematical Society of Japan
Previous article
feedback
Top