Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Harmonic maps into Grassmann manifolds
Yasuyuki Nagatomo
著者情報
ジャーナル 認証あり

2025 年 77 巻 3 号 p. 629-707

詳細
抄録

A harmonic map from a Riemannian manifold into a Grassmann manifold is characterized by a vector bundle, a space of sections of this bundle and a Laplace operator. We apply our main theorem (a generalization of theorem of Takahashi) to generalize the theory of do Carmo and Wallach and to describe the moduli space of harmonic maps satisfying the gauge and the Einstein–Hermitian conditions from a compact Riemannian manifold into a Grassmannian. The geometric meaning of the compactification of the moduli space is interpreted and it is shown that the compactified moduli space is connected and convex. As applications, several rigidity results are exhibited and we also construct moduli spaces of holomorphic isometric embeddings of the complex projective line into complex quadrics of low degree. The compactification of the moduli space leads to classification theorems for equivariant harmonic maps.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2025 The Mathematical Society of Japan
次の記事
feedback
Top