訂正日: 2006/08/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) W. Ackermann, Konstruktiver Aufbau eines Abschnitts der zweiten Cantorschen Zahlenklasse, Math. Z., 53 (1951), 403-413. 2) G. Gentzen, Untersuchungen über das logische Schliessen I, II, Math. Z., 39 (1934), 176-210, 405-431. 3) G. Gentzen, Neue Fassung des Widerspruchsfreiheitsbeweises fur die reine Zahlentheorie. Forschung zur Logik and zur Grundlegung der exakten Wissen-schaften, Neue Folge 4, Leipzig (1938), 19-44. 4) G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Math. Ann., 112 (1936), 493-565. 5) G. Takeuti, On a generalized logic calculus, Jap. J. Math., 23 (1953), 39-96; Errata to 'On a generalized logic calculus', Jap. J. Math., 24 (1954), 149-156. 6) G. Takeuti, On the fundamental conjecture of GLC V, J. Math. Soc. Japan, 10 (1958), 121-134. 7) G. Takeuti, Ordinal diagrams, J. Math. Soc. Japan, 9 (1957), 386-394. 8) G. Takeuti, On the fundamental conjecture of GLC I, J. Math. Soc. Japan, 7 (1955), 249-275. 9) G. Takeuti, A metamathematical theorem on functions, J. Math. Soc. Japan, 8 (1956), 65-78.
Right : [1] W. Ackermann, Konstruktiver Aufbau eines Abschnitts der zweiten Cantorschen Zahlenklasse, Math. Z., 53 (1951), 403-413. [2] G. Gentzen, Untersuchungen über das logische Schliessen I, II, Math. Z., 39 (1934), 176-210, 405-431. [3] G. Gentzen, Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie. Forschung zur Logik and zur Grundlegung der exakten Wissen-schaften, Neue Folge 4, Leipzig (1938), 19-44. [4] G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Math. Ann., 112 (1936), 493-565. [5] G. Takeuti, On a generalized logic calculus, Jap. J. Math., 23 (1953), 39-96; Errata to ‘On a generalized logic calculus’, Jap. J. Math., 24 (1954), 149-156. [6] G. Takeuti, On the fundamental conjecture of GLC V, J. Math. Soc. Japan, 10 (1958), 121-134. [7] G. Takeuti, Ordinal diagrams, J. Math. Soc. Japan, 9 (1957), 386-394. [8] G. Takeuti, On the fundamental conjecture of GLC I, J. Math. Soc. Japan, 7 (1955), 249-275. [9] G. Takeuti, A metamathematical theorem on functions, J. Math. Soc. Japan, 8 (1956), 65-78.