訂正日: 2006/09/26訂正理由: -訂正箇所: 論文タイトル訂正内容: Wrong : Martin boundary for liner elliptic differential operators of second order in a manifold Right : Martin boundary for linear elliptic differential operators of second order in a manifold
訂正日: 2006/09/26訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, Tech. Report 16, Univ. of Kansas (1956). 2) M. Brelot, Lectures on potential theory, Tata Inst. of Fundamental Research, Bombay, 1960. 3) J. L. Doob, Discrete potential theory and boundaries, J. Math. Mech., 8 (1959,) 433-458. 4) G. A. Hunt, Markov chains and Martin boundaries, Ill, J. Math., 4 (1960), 313-340. 5) S. Ito, A boundary value problem of partial differential equations of parabolic type, Duke Math. J., 24 (1957), 299-312. 6) S. Ito, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math., 27 (1957), 55-102. 7) S. Ito, On existence of Green function and positive superharmonic functions for linear elliptic operators of second order, this volume, 299-306. 8) R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. 9) M. G. šur, Martin's boundary for linear elliptic operators of second order, Izv. Akad. Nauk, SSSR., 27 (1963), 45-60 (Russian). 10) T. Watanabe, On the theory of Martin boundaries induced by countable Markov processes, Mem. Coll. Sci. Univ. Kyoto Ser. A, 33 (1960), 39-108.
Right : [1] N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, Tech. Report 16, Univ. of Kansas (1956). [2] M. Brelot, Lectures on potential theory, Tata Inst. of Fundamental Research, Bombay, 1960. [3] J. L. Doob, Discrete potential theory and boundaries, J. Math. Mech., 8 (1959,) 433-458. [4] G. A. Hunt, Markov chains and Martin boundaries, Ill, J. Math., 4 (1960), 313-340. [5] S. Itô, A boundary value problem of partial differential equations of parabolic type, Duke Math. J., 24 (1957), 299-312. [6] S. Itô, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math., 27 (1957), 55-102. [7] S. Itô, On existence of Green function and positive superharmonic functions for linear elliptic operators of second order, this volume, 299-306. [8] R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. [9] M. G. Šur, Martin's boundary for linear elliptic operators of second order, Izv. Akad. Nauk, SSSR., 27 (1963), 45-60 (Russian). 10) T. Watanabe, On the theory of Martin boundaries induced by countable Markov processes, Mem. Coll. Sci. Univ. Kyoto Ser. A, 33 (1960), 39-108.