Published: 1965 Received: September 14, 1964Available on J-STAGE: September 26, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 26, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) D. Blackwell, Another countable Markov process with only instantaneous states, Ann. Math. Statist., 29 (1958), 313-316. 2) R. M. Blumenthal, R. K. Getoor, and H. P. McKean, Jr, Markov processes with identical hitting distributions, Illinois, J. Math., 6 (1962), 402-420. 3) N. Bourbaki, Topologie Générale, Hermann, 1940-1949. 4) K. L. Chung, Markov chains with stationary transition probabilities, Springer, 1960. 5) R. L. Dobrusin, An example of a countable homogeneous Markov process all states of which are instantaneous, Theor. Probability Appl., 1 (1956) 481-485. 6) W. Feller and H. P. McKean, A diffusion equivalent to a countable Markov chain, Proc. Nat. Acad. Sci. U. S. A., 42 (1956), 351-354. 7) I. V. Girsanov, Strongly Feller processes I, Theor. Probability Appl., 5 (1960), 7-28. 8) K. Ito, Stochastic processes, Tokyo, 1957. (Japanese) 9) R. Z. Khas'minskii, Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equation, Theor. Probability Appl., 5 (1960), 196-214. 10) H. Kunita and H. Nomoto, A method of compactification concerning Markov processes and its applications, Seminar on Prob., 14 (1962), 1-126. (Japanese) 11) P. Lévy, Systèmes markoviens et stationnaires. Cas dénombrable., Ann. Sci. École Norm. Sup., (3) 68 (1951), 327-381. 12) G. Maruyama and H. Tanaka, Ergodic properties of N-dimensional recurrent Markov processes, Mem. Fac. Sci. Kyushu Univ. Ser. A, 13 (1959), 157-172. 13) M. Nagasawa, The adjoint process of a diffusion with reflecting barrier, Kodai Math. Sem. Rep., 13 (1961), 235-248. 14) D. Ray, Resolvents, transition functions and strongly Markovian processes, Ann. of Math., 70 (1959), 43-72. 15) L. V. Seregin, Continuity conditions for stochastic processes, Theor. Probability Appl., 6 (1961), 3-30. 16) T. Ueno, On recurrent Markov processes, Kodai Math. Sem. Rep., 12 (1960), 109-142. 17) T. Watanabe, Some general properties of Markov processes, J. Inst. Polytech. Osaka City Univ. Ser. A, 9 (1958), 9-29.
Right : [1] D. Blackwell, Another countable Markov process with only instantaneous states, Ann. Math. Statist., 29 (1958), 313-316. [2] R. M. Blumenthal, R. K. Getoor, and H. P. McKean, Jr, Markov processes with identical hitting distributions, Illinois, J. Math., 6 (1962), 402-420. [3] N. Bourbaki, Topologie Générale, Hermann, 1940-1949. [4] K. L. Chung, Markov chains with stationary transition probabilities, Springer, 1960. [5] R. L. Dobrusin, An example of a countable homogeneous Markov process all states of which are instantaneous, Theor. Probability Appl., 1 (1956) 481-485. [6] W. Feller and H. P. McKean, A diffusion equivalent to a countable Markov chain, Proc. Nat. Acad. Sci. U. S. A., 42 (1956), 351-354. [7] I. V. Girsanov, Strongly Feller processes I, Theor. Probability Appl., 5 (1960), 7-28. [8] K. Ito, Stochastic processes, Tokyo, 1957. (Japanese) [9] R. Z. Khas'minskii, Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equation, Theor. Probability Appl., 5 (1960), 196-214. [10] H. Kunita and H. Nomoto, A method of compactification concerning Markov processes and its applications, Seminar on Prob., 14 (1962), 1-126. (Japanese) [11] P. Lévy, Systèmes markoviens et stationnaires. Cas dénombrable., Ann. Sci. École Norm. Sup., (3) 68 (1951), 327-381. [12] G. Maruyama and H. Tanaka, Ergodic properties of N-dimensional recurrent Markov processes, Mem. Fac. Sci. Kyushu Univ. Ser. A, 13 (1959), 157-172. [13] M. Nagasawa, The adjoint process of a diffusion with reflecting barrier, Kodai Math. Sem. Rep., 13 (1961), 235-248. [14] D. Ray, Resolvents, transition functions and strongly Markovian processes, Ann. of Math., 70 (1959), 43-72. [15] L. V. Seregin, Continuity conditions for stochastic processes, Theor. Probability Appl., 6 (1961), 3-30. [16] T. Ueno, On recurrent Markov processes, Kodai Math. Sem. Rep., 12 (1960), 109-142. [17] T. Watanabe, Some general properties of Markov processes, J. Inst. Polytech. Osaka City Univ. Ser. A, 9 (1958), 9-29.
Date of correction: September 26, 2006Reason for correction: -Correction: PDF FILEDetails: -