訂正日: 2006/09/26訂正理由: -訂正箇所: 論文タイトル訂正内容: Wrong : A normal space Z with ind z=0, dim z=1, Ind Z=2 Right : A normal space Z with ind Z=0, dim Z=1, Ind Z=2
訂正日: 2006/09/26訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) C. H. Dowker, Local dimension of normal spaces, Quart. J. Math. Oxford Ser. (2), 6 (1955), 101-120. 2) K. Morita, Star finite coverings and the star finite property, Math. Japon., 1 (1948), 60-68. 3) K. Morita, On closed mappings and dimension, Proc. Japan Acad., 32 (1956), 161-165. 4) K. Nagami, Some theorems in dimension theory for non-separable spaces, J. Math. Soc. Japan, 9 (1957), 80-92. 5) K. Nagami, A note on Hausdorff spaces with the star-finite property III, Proc. Japan Acad., 37 (1961), 356-357. 6) K. Nagami, Monotone sequence of 0-dimensional subsets of metric spaces, forthcoming. 7) J. Nagata, Modern dimension theory, Groningen-Amsterdam, 1965. 7) J. Nagata, Modern dimension theory, Groningen-Amsterdam, 1965. 8) Yu. M. Smirnov, An exampls of 0-dimensional normal space having infinite covering dimension, Dokl. Acad. Nauk SSSR, 123 (1958), 40-42. 9) Petr Vopenka, On the dimension of compact spaces, Czechoslovak Math. J., 8 (1958), 319-327.
Right : [1] C. H. Dowker, Local dimension of normal spaces, Quart. J. Math. Oxford Ser. (2), 6 (1955), 101-120. [2] K. Morita, Star finite coverings and the star finite property, Math. Japon., 1 (1948), 60-68. [3] K. Morita, On closed mappings and dimension, Proc. Japan Acad., 32 (1956), 161-165. [4] K. Nagami, Some theorems in dimension theory for non-separable spaces, J. Math. Soc. Japan, 9 (1957), 80-92. [5] K. Nagami, A note on Hausdorff spaces with the star-finite property III, Proc. Japan Acad., 37 (1961), 356-357. [6] K. Nagami, Monotone sequence of 0-dimensional subsets of metric spaces, forthcoming. [7] J. Nagata, Modern dimension theory, Groningen-Amsterdam, 1965. [8] Yu. M. Smirnov, An exampls of 0-dimensional normal space having infinite covering dimension, Dokl. Acad. Nauk SSSR, 123 (1958), 40-42. [9] Petr Vopenka, On the dimension of compact spaces, Czechoslovak Math. J., 8 (1958), 319-327.