訂正日: 2006/09/26訂正理由: -訂正箇所: 論文サブタイトル訂正内容: Wrong : Dedicated to Professor S. Iyanaga on his 60th birthday
訂正日: 2006/09/26訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) H. P. Allen, Jordan algebras and Lie algebras of type D4 Bull. Amer. Math. Soc., 72 (1966), 65-67. 2) E. Cartan, Sur la structure des groupes de transformations finis et continus (Thèse), Paris, 1894; Oeuvres complètes, Vol. 1, Paris, Gauthier-Villars, 1952, 137-287. 3) E. Cartan, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. France, 4 (1913), 53-96; Oeuvres complètes, Vol. 1, Paris, Gauthier-Villars, 355-398. 4) E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. N. S., 30 (72) (1952), 349-462; Amer. Math. Soc. Transl., Ser. 2, 6 (1957), 111-244. 5) J. C. Ferrar, On Lie algebras of type E6, Bull. Amer. Math. Soc., 73 (1967), 151-155. 6) M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über p-adischen Körpern, II, Math. Zeit., 89 (1965), 250-272. 7) M. Koecher and H. Braun, Jordan-Algebren, Springer-Verlag, Berlin-Heidelberg-New York, 1966. 8) I. Satake, On the theory of reductive algebraic groups over a perfect field, J. Math. Soc. Japan, 15 (1963), 210-235. 9) I. Satake, Symplectic representations of algebraic groups satisfying a certain analyticity condition, Acta Math., 117 (1967), 215-279. 10) T. Springer, Oktaven, Jordan-Algebren and Ausnahmegruppen, Lecture Note, Göttingen, 1963. 11) J. Tits, Classification of algebraic semisimple groups, Proc. of Symposia in pure Math., Vol. 9 (1966), 33-62. 12) J. Tits, Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionelles, I. Construction, Indag. Math., 28 (=Proc. Kon. Ned. Akad. Wet. Ser. A, 69) (1966), 223-237. 13) R. D. Schafer, An introduction to nonassociative algebras, Academic Press, New York and London, 1966.
Right : [1] H. P. Allen, Jordan algebras and Lie algebras of type D4 Bull. Amer. Math. Soc., 72 (1966), 65-67. [2] E. Cartan, Sur la structure des groupes de transformations finis et continus (Thèse), Paris, 1894; Oeuvres complètes, Vol. 1, Paris, Gauthier-Villars, 1952, 137-287. [3] E. Cartan, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. France, 4 (1913), 53-96; Oeuvres complètes, Vol. 1, Paris, Gauthier-Villars, 355-398. [4] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. N. S., 30 (72) (1952), 349-462; Amer. Math. Soc. Transl., Ser. 2, 6 (1957), 111-244. [5] J. C. Ferrar, On Lie algebras of type E6, Bull. Amer. Math. Soc., 73 (1967), 151-155. [6] M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über p-adischen Körpern, II, Math. Zeit., 89 (1965), 250-272. [7] M. Koecher and H. Braun, Jordan-Algebren, Springer-Verlag, Berlin-Heidelberg-New York, 1966. [8] I. Satake, On the theory of reductive algebraic groups over a perfect field, J. Math. Soc. Japan, 15 (1963), 210-235. [9] I. Satake, Symplectic representations of algebraic groups satisfying a certain analyticity condition, Acta Math., 117 (1967), 215-279. [10] T. Springer, Oktaven, Jordan-Algebren und Ausnahmegruppen, Lecture Note, Göttingen, 1963. [11] J. Tits, Classification of algebraic semisimple groups, Proc. of Symposia in pure Math., Vol. 9 (1966), 33-62. [13] R. D. Schafer, An introduction to nonassociative algebras, Academic Press, New York and London, 1966.