訂正日: 2006/09/26訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) G. Gentzen, Untersuchungen über das logische Schliessen, I, II, Math. Z., 39 (1934), 176-210, 405-431. 2) G. Gentzen, Neue Fassung des Widerspruchsfreiheitsbeweis für die reine Zahlentheorie. Forschungen zur Logik and zur Grundlegung der exakten Wissenschaften, Neue Folge 4, Leipzig, 1938, 19-44. 3) G. Gentzen, Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie, Mathematishe Annalen, 119 (1943), 140-161. 4) K. Gödel, Über eine bisher noch benutzte Erweiterung des finiten Standpunktes, Dialectica, 12 (1958), 280-287. 5) S. C. Kleene, Introduction to Metamathematics, North-Holland, New York, Amsterdam and Groningen, 1952. 6) G. Kreisel, On the, interpretation of non-finitist proofs, J. Symb. Logic, 16 (1951), 241-267, and 17 (1952), 43-58, See Erratum, J. Symb. Logic, 17, iv. 7) G. Kreisel, Interpretation of analysis by means of constructive functionals of finite types, Constructivity in Mathematics, Amsterdam, 1959, 101-128. 8a) G. Kreisel, Proof by transfinite induction and definition by transfinite induction in quantifier-free systems, (abstract), J. Symb. Logic, 24 (1959), 322-323. 8b) G. Kreisel, Inessential extensions of Heyting's arithmetic by means of functionals of finite types, (abstract), J. Symb. Logic, 24 (1959), 284. 8c) G. Kreisel, Status of the first ε-number in first order arithmetic, (abstract), J. Symb. Logic, 25 (1960), 390. 9) G. Kreisel, Mathematical Logic, Lectures on Modern Mathematics, 3, New York, 1965, 95-195. 10) W. W. Tait, A characterization of ordinal recursive functions, (abstract), J. Symb. Logic, 24 (1959), 325. 11) G. Takeuti, On a generalized logic calculus, Japan. J. Math., 23 (1953), 39-96.Errata to “On a generalized logic calculus”, Japan. J. Math., 24 (1954), 149-156. 12) G. Takeuti, On the fundamental conjecture of GLC, I, J. Math. Soc. Japan, 7 (1955), 249-275. 13) G. Takeuti, On the fundamental conjecture of GLC, III, J. Math. Soc. Japan, 8 (1956), 54-64. 14) G. Takeuti, Ordinal diagrams, J. Math. Soc. Japan, 9 (1957), 386-394. 15) G. Takeuti, On the fundamental conjecture of GLC, V, J. Math. Soc. Japan, 10 (1958), 121-134. 16) G. Takeuti, On the formal theory of ordinal diagrams, Ann. Japan Assoc. Philos. Sci., 3 (1958), 151-170. 17) G. Takeuti, Ordinal diagrams, II, J. Math. Soc. Japan, 12 (1960), 385-391. 18) G. Takeuti, On the fundamental conjecture of GLC, VI, Proc. Japan Acad., 37 (1961), 437-439. 19) G. Takeuti, On the inductive definition with quantifiers of second order, J. Math. Soc. Japan, 13 (1961), 333-341. 20) G. Takeuti, A remark on Gentzen's paper “Beweisbarkeit and Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie”, I, II, Proc. Japan Acad., 39 (1963), 263-269. 21) G. Takeuti, Consistency proofs of subsystems of classical analysis, Ann. of Math., 86 (1967), 299-348.
Right : [1] G. Gentzen, Untersuchungen über das logische Schliessen, I, II, Math. Z., 39 (1934), 176-210, 405-431. [2] G. Gentzen, Neue Fassung des Widerspruchsfreiheitsbeweis für die reine Zahlentheorie, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, Neue Folge 4, Leipzig, 1938, 19-44. [3] G. Gentzen, Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie, Mathematishe Annalen, 119 (1943), 140-161. [4] K. Gödel, Über eine bisher noch benutzte Erweiterung des finiten Standpunktes, Dialectica, 12 (1958), 280-287. [5] S. C. Kleene, Introduction to Metamathematics, North-Holland, New York, Amsterdam and Groningen, 1952. [6] G. Kreisel, On the interpretation of non-finitist proofs, J. Symb. Logic, 16 (1951), 241-267, and 17 (1952), 43-58, See Erratum. J. Symb. Logic, 17, iv. [7] G. Kreisel, Interpretation of analysis by means of constructive functionals of finite types, Constructivity in Mathematics, Amsterdam, 1959, 101-128. [8a] G. Kreisel, Proof by transfinite induction and definition by transfinite induction in quantifier-free systems, (abstract), J. Symb. Logic, 24 (1959), 322-323. [8b] G. Kreisel, Inessential extensions of Heyting's arithmetic by means of functionals of finite types, (abstract), J. Symb. Logic, 24 (1959), 284. [8c] G. Kreisel, Status of the first ε-number in first order arithmetic, (abstract), J. Symb. Logic, 25 (1960), 390. [9] G. Kreisel, Mathematical Logic, Lectures on Modern Mathematics, 3, New York, 1965, 95-195. [10] W. W. Tait, A characterization of ordinal recursive functions, (abstract), J. Symb. Logic, 24 (1959), 325. [11] G. Takeuti, On a generalized logic calculus, Japan. J. Math., 23 (1953), 39-96. Errata to “On a generalized logic calculus”, Japan. J. Math., 24 (1954), 149-156. [12] G. Takeuti, On the fundamental conjecture of GLC, I, J. Math. Soc. Japan, 7 (1955), 249-275. [13] G. Takeuti, On the fundamental conjecture of GLC, III, J. Math. Soc. Japan, 8 (1956), 54-64. [14] G. Takeuti, Ordinal diagrams, J. Math. Soc. Japan, 9 (1957), 386-394. [15] G. Takeuti, On the fundamental conjecture of GLC, V, J. Math. Soc. Japan, 10 (1958), 121-134. [16] G. Takeuti, On the formal theory of ordinal diagrams, Ann. Japan Assoc. Philos. Sci., 3 (1958), 151-170. [17] G. Takeuti, Ordinal diagrams, II, J. Math. Soc. Japan, 12 (1960), 385-391. [18] G. Takeuti, On the fundamental conjecture of GLC, VI, Proc. Japan Acad., 37 (1961), 437-439. [19] G. Takeuti, On the inductive definition with quantifiers of second order, J. Math. Soc. Japan, 13 (1961), 333-341. [20] G. Takeuti, A remark on Gentzen's paper “Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie”, I, II, Proc. Japan Acad., 39 (1963), 263-269. [21] G. Takeuti, Consistency proofs of subsystems of classical analysis, Ann. of Math., 86 (1967), 299-348.