1) Tokyo Metropolitan University and Institute for Advanced Study
訂正後 :
1) Tokyo Metropolitan University
2) Institute for Advanced Study
訂正日: 2006/09/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) R.H. Bing and J.M. Kister, Taming complexes in hyperplanes, Duke Math. J., 31 (1964), 491-511. 2) W. Browder, J. Levine and G.R. Livesay, Finding a boundary for an open manifold, Amer. J. Math., 87 (1965), 1017-1028. 3) V.K.A.M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres I, Proc. London Math. Soc., 3 (1953), 29-53. 4) M.W. Hirsch, On combinatorial submanifolds of differentiable manifolds, Comment. Math. Helv., 36 (1961), 103-111. 5) M.W. Hirsch, Smooth regular neighborhoods, Ann. of Math., 76 (1962), 524-530. 6) J.F.P. Hudson and E.C. Zeeman, On regular neighborhoods, Proc. London Math. Soc., 14 (1964), 719-745. 7) L.S. Hush, Thesis, Florida State University. 8) M. Kato, Regular neighborhoods are not topologically invariant, Bull. Amer. Math. Soc., 74 (1968), 988-991. 9) M. Kato, Higher dimensional PL knots and knot manifolds, J. Math. Soc. Japan, 21 (1969), 458-480. 10) M. Kervaire, Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv., 40 (1965), 31-42. 11) B. Mazur, Differential topology from the point of view of simple homotopy theory, Publ. Math. IHES No. 15. 12) B. Mazur, Corrections to: Differential topology from the point of view of simple homotopy theory, Publ. Math. IHES No. 23. 13) B. Mazur, Relative neighborhoods and the theorems of Smale, Ann. of Math., 77 (1963), 232-249. 14) J. Milnor, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math., 74 (1961), 575-590. 15) J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc., 72 (1966), 358-426. 16) L.C. Siebenmann and J. Sondow, Some homeomorphic sphere pairs that are combinatorially distinct, Comment. Math. Helv., 41 (1966-67), 261-272. 17) L.C. Siebenmann, On the homotopy type of compact topological manifolds, Bull. Amer. Math. Soc., 74 (1968), 738-742. 18) J. Stallings, On infinite processes leading to differentiability in the complement of a point, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton, N.J., U.S.A., (1965), 245-254. 19) J.H.C. Whitehead, Simple homotopy types, Amer. J. Math., 72 (1950), 1-57. 20) E.C. Zeeman, Seminar on combinatorial topology, IHES (1963), (mimeographed notes). 21) E.C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc., (3) 115 (1965). 471-495.
Right : [1] R. H. Bing and J.M. Kister, Taming complexes in hyperplanes, Duke Math. J., 31 (1964), 491-511. [2] W. Browder, J. Levine and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math., 87 (1965), 1017-1028. [3] V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres I, Proc. London Math. Soc., 3 (1953), 29-53. [4] M. W. Hirsch, On combinatorial submanifolds of differentiable manifolds, Comment. Math. Helv., 36 (1961), 103-111. [5] M. W. Hirsch, Smooth regular neighborhoods, Ann. of Math., 76 (1962), 524-530. [6] J. F. P. Hudson and E. C. Zeeman, On regular neighborhoods, Proc. London Math. Soc., 14 (1964), 719-745. [7] L. S. Hush, Thesis, Florida State University. [8] M. Kato, Regular neighborhoods are not topologically invariant, Bull. Amer. Math. Soc., 74 (1968), 988-991. [9] M. Kato, Higher dimensional PL knots and knot manifolds, J. Math. Soc. Japan, 21 (1969), 458-480. [10] M. Kervaire, Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv., 40 (1965), 31-42. [11] B. Mazur, Differential topology from the point of view of simple homotopy theory, Publ. Math. IHES No. 15. [12] B. Mazur, Corrections to: Differential topology from the point of view of simple homotopy theory, Publ. Math. IHES No. 23. [13] B. Mazur, Relative neighborhoods and the theorems of Smale, Ann. of Math., 77 (1963), 232-249. [14] J. Milnor, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math., 74 (1961), 575-590. [15] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc., 72 (1966), 358-426. [16] L. C. Siebenmann and J. Sondow, Some homeomorphic sphere pairs that are combinatorially distinct, Comment. Math. Helv., 41 (1966-67), 261-272. [17] L. C. Siebenmann, On the homotopy type of compact topological manifolds, Bull. Amer. Math. Soc., 74 (1968), 738-742. [18] J. Stallings, On infinite processes leading to differentiability in the complement of a point, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton, N. J., U. S. A., (1965), 245-254. [19] J. H. C. Whitehead, Simple homotopy types, Amer. J. Math., 72 (1950), 1-57. [20] E. C. Zeeman, Seminar on combinatorial topology, IHES (1963), (mimeographed notes). [21] E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc., (3) 115 (1965). 471-495.