1) University of California, Berkeley Tokyo Institute fo Technology
訂正後 :
1) University of California
2) Tokyo Institute of Technology
訂正日: 2006/09/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) S.S. Chern, M. DoCarmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, to appear. 2) R. Maltz, Isometric immersion into spaces of constant curvature, to appear. 3) B. O'Neill, Isometric immersions which preserve curvature operators, Proc. Amer. Math. Soc., 13 (1962), 759-763. 4) B. O'Neill, Isometric immersion of flat Riemannian manifolds in Euclidean space, Michigan Math. J., 9 (1962), 199-205. 5) B. O'Neill, Umbilic of constant curvature immersions, Duke Math. J., 32 (1965), 149-159. 6) B. O'Neill and E. Stiel, Isometric immersions of constant curvature manifolds, Michigan Math. J., 10 (1963), 335-339. 7) T. Otsuki, A theory of Riemmanian submanifolds, Kodai Math. Sem. Rep., 20 (1968), 282-295. 8) T. Otsuki, Pseudo-umbilical submanifolds with M-index_??_1 in Euclidean spaces, Kodai Math. Sem. Rep., 20 (1968), 296-304. 9) T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, to appear. 10) E. Stiel, Isometric immersions of manifolds of nonnegative constant sectional curvature, Pacific J. Math., 15 (1965), 1415-1419.
Right : [1] S. S. Chern, M. DoCarmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, to appear. [2] R. Maltz, Isometric immersion into spaces of constant curvature, to appear. [3] B. O'Neill, Isometric immersions which preserve curvature operators, Proc. Amer. Math. Soc., 13 (1962), 759-763. [4] B. O'Neill, Isometric immersion of flat Riemannian manifolds in Euclidean space, Michigan Math. J., 9 (1962), 199-205. [5] B. O'Neill, Umbilic of constant curvature immersions, Duke Math. J., 32 (1965), 149-159. [6] B. O'Neill and E. Stiel, Isometric immersions of constant curvature manifolds, Michigan Math. J., 10 (1963), 335-339. [7] T. Otsuki, A theory of Riemmanian submanifolds, Kodai Math. Sem. Rep., 20 (1968), 282-295. [8] T. Otsuki, Pseudo-umbilical submanifolds with M-index≤1 in Euclidean spaces, Kodai Math. Sem. Rep., 20 (1968), 296-304. [9] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, to appear. [10] E. Stiel, Isometric immersions of manifolds of nonnegative constant sectional curvature, Pacific J. Math., 15 (1965), 1415-1419.