Published: 1971 Received: May 23, 1970Available on J-STAGE: September 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 29, 2006Reason for correction: -Correction: TITLEDetails: Wrong : A characterization of the simple groups U7 and M1 Right : A characterization of the simple groups U7 and M11
Date of correction: September 29, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) D. Gorenstein, Finite groups in which Sylow 2-subgroups are abelian and centralizers of involutions are solvable, Canad. J. Math., 17 (1965), 860-896. 2) D. Gorenstein, Finite groups the centralizers of whose involutions have normal 2-complements, Canad. J. Math., 21 (1969), 335-357. 3) D. Gorenstein and J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334-393. 4) B. Huppert, Zweifach transitive auflösbare Permutationsgruppen, Math. Z., 68 (1957), 126-150. 5) B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967. 6) N. Ito, On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417. 7) H. Kimura, On doubly transitive permutation groups of degree n and order 2p(n-1)n, I, II, Osaka J. Math., 7 (1970), (to appear). 8) H. Lüneburg, Charakterisierungen der endlichen desarguesschen projectiven Ebenen, Math. Z., 85 (1964), 419-450. 9) H. Lüneburg, Transitive Erweiterungen endlicher Permutationsgruppen, Springer, Berlin, 1969. 10) R. Noda and H. Yamaki, A characterization of the alternating groups of degrees six and seven, Osaka J. Math., 7 (1970), (to appear). 11) D. Parrott, On the Mathieu groups M22 and M11, J. Austral. Math. Soc., 11 (1970), 69-81. 12) M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. Math., 80 (1964), 58-77. 13) H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Z., 73 (1960), 146-158.
Right : [1] D. Gorenstein, Finite groups in which Sylow 2-subgroups are abelian and centralizers of involutions are solvable, Canad. J. Math., 17 (1965), 860-896. [2] D. Gorenstein, Finite groups the centralizers of whose involutions have normal 2-complements, Canad. J. Math., 21 (1969), 335-357. [3] D. Gorenstein and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334-393. [4] B. Huppert, Zweifach transitive auflösbare Permutationsgruppen, Math. Z., 68 (1957), 126-150. [5] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967. [6] N. Ito, On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417. [7] H. Kimura, On doubly transitive permutation groups of degree n and order 2p(n-1)n, I, II, Osaka J. Math., 7 (1970), (to appear). [8] H. Lüneburg, Charakterisierungen der endlichen desarguesschen projectiven Ebenen, Math. Z., 85 (1964), 419-450. [9] H. Lüneburg, Transitive Erweiterungen endlicher Permutationsgruppen, Springer, Berlin, 1969. [10] R. Noda and H. Yamaki, A characterization of the alternating groups of degrees six and seven, Osaka J. Math., 7 (1970), (to appear). [11] D. Parrott, On the Mathieu groups M22 and M11, J. Austral. Math. Soc., 11 (1970), 69-81. [12] M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. Math., 80 (1964), 58-77. [13] H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Z., 73 (1960), 146-158.
Date of correction: September 29, 2006Reason for correction: -Correction: PDF FILEDetails: -