訂正日: 2006/09/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci. Publ, Math., 25 (1965), 313-362. 2) V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math., 48 (1947), 568-640. 3) Harish-Chandra, Representations of semisimple Lie groups IV, Amer. J. Math., 77 (1955), 743-777. 4) Harish-Chandra, Representations of semisimple Lie groups V, Amer. J. Math., 78 (1956), 1-41. 5) Harish-Chandra, Discrete series for semisimple Lie groups I, Acta Math., 113 (1965), 241-318. 6) Harish-Chandra, Discrete series for semisimple Lie groups II, Acta Math., 116 (1966), 1-111. 7) S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. 8) R. Hotta, Elliptic complexes on certain homogeneous spaces, Osaka J. Math., 7 (1970), 117-160. 9) R. Hotta, A remark on the Laplace-Beltrami operators attached to hermitian symmetric pairs, Osaka J. Math., 8 (1971), 15-19. 10) R. Hotta, On realization of the discrete series for semisimple Lie groups, Proc. Japan Acad., 46 (1970), 993-996. 11) M. S. Narasimhan and K. Okamoto, An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of non-compact type, Ann. of Math., 91 (1970), 486-511. 12) K. Okamoto, On induced representations, Osaka J. Math., 4 (1967), 85-94. 13) K. Okamoto and H. Ozeki, On square-integrable ∂-cohomology spaces attached to Hermitian symmetric spaces, Osaka J. Math., 4 (1967), 95-110. 14) W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Thesis, Proc. Nat. Acad. Sci. U.S.A., 59 (1968), 56-59. 15) W. Schmid, On a conjecture of Langlands, Ann. of Math., 93 (1971), 1-42. 16) R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés,Bull. Soc. Math. France, 91 (1963), 289-433.
Right : [1] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci. Publ, Math., 25 (1965), 313-362. [2] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math., 48 (1947), 568-640. [3] Harish-Chandra, Representations of semisimple Lie groups IV, Amer. J. Math., 77 (1955), 743-777. [4] Harish-Chandra, Representations of semisimple Lie groups V, Amer. J. Math., 78 (1956), 1-41. [5] Harish-Chandra, Discrete series for semisimple Lie groups I, Acta Math., 113 (1965), 241-318. [6] Harish-Chandra, Discrete series for semisimple Lie groups II, Acta Math., 116 (1966), 1-111. [7] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. [8] R. Hotta, Elliptic complexes on certain homogeneous spaces, Osaka J. Math., 7 (1970), 117-160. [9] R. Hotta, A remark on the Laplace-Beltrami operators attached to hermitian symmetric pairs, Osaka J. Math., 8 (1971), 15-19. [10] R. Hotta, On realization of the discrete series for semisimple Lie groups, Proc. Japan Acad., 46 (1970), 993-996. [11] M. S. Narasimhan and K. Okamoto, An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of non-compact type, Ann. of Math., 91 (1970), 486-511. [12] K. Okamoto, On induced representations, Osaka J. Math., 4 (1967), 85-94. [13] K. Okamoto and H. Ozeki, On square-integrable ∂-cohomology spaces attached to Hermitian symmetric spaces, Osaka J. Math., 4 (1967), 95-110. [14] W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Thesis, Proc. Nat. Acad. Sci. U. S. A., 59 (1968), 56-59. [15] W. Schmid, On a conjecture of Langlands, Ann. of Math., 93 (1971), 1-42. [16] R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés,Bull. Soc. Math. France, 91 (1963), 289-433.