訂正日: 2006/09/29訂正理由: -訂正箇所: 著者情報訂正内容: Wrong : K. F. CLANCEY1), C. R. PUTNAM1) Right : K. F. CLANCEY1), C. R. PUTNAM2)
訂正日: 2006/09/29訂正理由: -訂正箇所: 所属機関情報訂正内容: 訂正前 :
1) University of Georgia Purdue University
訂正後 :
1) University of Georgia
2) Purdue University
訂正日: 2006/09/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) K. F. Clancey, Examples of non-normal seminormal operators whose spectra are not spectral sets, Proc. Amer. Math. Soc., 24 (1970), 797-800. 2) K. F. Clancey and C. R. Putnam, The local spectral behavior of completely subnormal operators, Trans. Amer. Math. Soc., 163 (1972), 239-244. 3) K. F. Clancey and C. R. Putnam, The spectra of hyponormal integral operators, Comm. Math. Helv. (to appear). 4) T. W. Gamelin, Uniform Algebras, Prentice Hall, 1969. 5) A. D. Joshi, Hyponormal polynomials of monotone shifts, Thesis, Purdue University, 1971. 6) A. Lebow, On von Neumann's theory of spectral sets, J. Math. Anal. Appl., 7 (1963), 64-90. 7) S. Mergelyan, Uniform approximations to functions of a complex variable, Amer. Math. Soc. Trans., No. 10, 1954. 8) J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., 4 (1951), 258-281. 9) C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Zeits., 116 (1970), 323-330. 10) C. R. Putnam, The spectra of subnormal operators, Proc. Amer. Math. Soc., 28 (1971), 473-477. 11) C. R. Putnam, The spectra of completely hyponormal operators, Amer. J. Math., 93 (1971), 699-708. 12) F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar Pub. Co., New York, 1955. 13) J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117 (1965), 469-476. 14) J. G. Stampfli, Which weighted shifts are subnormal, Pacific J. Math., 17 (1966), 367-379. 15) L. Zalcman, Analytic capacity and rational approximation, Lecture Notes in Mathematics, no. 50, Springer, 1968.
Right : [1] K. F. Clancey, Examples of non-normal seminormal operators whose spectra are not spectral sets, Proc. Amer. Math. Soc., 24 (1970), 797-800. [2] K. F. Clancey and C. R. Putnam, The local spectral behavior of completely subnormal operators, Trans. Amer. Math. Soc., 163 (1972), 239-244. [3] K. F. Clancey and C. R. Putnam, The spectra of hyponormal integral operators, Comm. Math. Helv. (to appear). [4] T. W. Gamelin, Uniform Algebras, Prentice Hall, 1969. [5] A. D. Joshi, Hyponormal polynomials of monotone shifts, Thesis, Purdue University, 1971. [6] A. Lebow, On von Neumann's theory of spectral sets, J. Math. Anal. Appl., 7 (1963), 64-90. [7] S. Mergelyan, Uniform approximations to functions of a complex variable, Amer. Math. Soc. Trans., No. 10, 1954. [8] J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., 4 (1951), 258-281. [9] C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Zeits., 116 (1970), 323-330. [10] C. R. Putnam, The spectra of subnormal operators, Proc. Amer. Math. Soc., 28 (1971), 473-477. [11] C. R. Putnam, The spectra of completely hyponormal operators, Amer. J. Math., 93 (1971), 699-708. [12] F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar Pub. Co., New York, 1955. [13] J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117 (1965), 469-476. [14] J. G. Stampfli, Which weighted shifts are subnormal, Pacific J. Math., 17 (1966), 367-379. [15] L. Zalcman, Analytic capacity and rational approximation, Lecture Notes in Mathematics, no. 50, Springer, 1968.