Published: 1974 Received: October 27, 1972Available on J-STAGE: September 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 29, 2006Reason for correction: -Correction: DTRECEIVEDDetails: Wrong : 19721002 Right : 19721027
Date of correction: September 29, 2006Reason for correction: -Correction: TITLEDetails: Wrong : Riemannian manifolds of nullity index zero and Right : Riemannian manifolds of nullity index zero and curvature tensor-preserving transformations
Date of correction: September 29, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to manifolds of nullity index zero and tensor-preserving transformations Professor S. Sasaki on his 60th birthday
Date of correction: September 29, 2006Reason for correction: -Correction: AFFILIATIONDetails: Wrong :
1) Mathematical Institute Tohoku University
Right :
1) Mathematical Institute Tôhoku University
Date of correction: September 29, 2006Reason for correction: -Correction: CITATIONDetails: Right : [1] S. S. Chern and N. H. Kuiper, Some theorems on the isometric imbedding of compact Riemann manifolds in euclidean space, Ann, of Math., 56 (1952), 422-430. [2] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962. [3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, I, II, Intersci. Publ., 1963, 1969. [4] O. Kowalski, On regular curvature structures, Math. Z., 125 (1972), 129-138. [5] O. Kowalski, A note on the Riemann curvature tensor, Commentat. Math. Univ. Carolinae, 13 (1972), 257-263. [6] M. Kurita, On the holonomy group of the conformally flat Riemannian manifold, Nagoya Math. J., 9 (1955), 161-171. [7] K. Nomizu and K. Yano, Some results related to the equivalence problem in Riemannian geometry, Proc. U. S. -Japan Seminar in Differential Geometry, Kyoto, 1965, 95-100. [8] A. Rosenthal, Riemannian manifolds of constant nullity, Michigan Math. J., 14 (1967), 469-480. [9] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J., 22 (1969), 363-388. [10] K. Sekigawa, On 4-dimensional connected Einstein space satisfying the condition R(X,Y)·R=0, Sci. Rep. Niigata Univ., 7 (1969), 29-31. [11] K. Sekigawa, Notes on some 3- and 4-dimensional Riemannian manifolds, to appear. [12] I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math., 13 (1960), 685-697. [13] H. Takagi, An example of Riemannian manifolds satisfying R(X, Y)·R=0 but not ∇R=0, Tôhoku Math. J., 24 (1972), 105-108. [14] H. Takagi and Y. Watanabe, On the holonomy groups of Kählerian manifolds with vanishing Bochner curvature tensor, Tôhoku Math. J., 25 (1973), 185-195. [16] S. Tanno, Strongly curvature-preserving transformations of pseudo-Riemannian manifolds, Tôhoku Math. J., 19 (1967), 245-250. [17] S. Tanno, Transformations of pseudo-Riemannian manifolds, J. Math. Soc. Japan, 21 (1969), 270-281. [18] G. Vranceanu, Sur la représentation géodésique des espaces de Riemann, Rev. Roumaine Math. Pures Appl., 1, no. 3 (1956), 147-165.
Date of correction: September 29, 2006Reason for correction: -Correction: PDF FILEDetails: -