訂正日: 2006/09/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) M. Brelot, Étude des intégrales de la chaleur Δu=cu, c_??_0, au voisinage d'un point singulier du coefficient, Ann. Sci., Ecole Norm. Sup., 48 (1931), 153-246. 2) C. Constantinescu und A. Cornea, Über einige Problem von M. Heins, Rev. Roumaine Math. Pures Appl., 4 (1959), 277-281. 3) C. Constantinescu und A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, 1963. 4) M. Heins, Riemann surfaces of infinite genus, Ann. of Math., 55 (1952), 296-317. 5) S. Ito, On existence of Green functions and positive superharmonic functions for linear elliptic operators of second order, J. Math. Soc. Japan, 16 (1964), 299-306. 6) S. Ito, Martin boundary for linear elliptic differential operators of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334. 7) O. Kellog, Foundations of Potential Theory, Frederick Ungar, 1929. 8) Z. Kuramochi, An example of a null-boundary Riemann surface, Osaka Math. J., 6 (1954), 83-91. 9) R. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. 10) C. Miranda, Partial Differential Equations of Elliptic Type, Springer, 1970. 11) L. Myrberg, Über die Integration der Differential Gleichung Δu=c(P)u auf offenen Riemannschen Flächen, Math. Scand., 2 (1954), 142-152. 12) L. Myrberg, Über die Existenz der Greenschen Funktion der Gleichung Δu= c(P)u auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., 170 (1954). 13) M. Nakai, The space of non-negative solutions of the equation Δu=Pu on a Riemann surface, Kôdai Math. Sem. Rep., 12 (1960), 151-178. 14) M. Nakai, Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-88. 15) M. Ozawa, Some classes of positive solutions of Δu=Pu on Riemann urfaces, I, Kôdai Math. Sem. Rep., 6 (1954), 121-126. 16) M. Ozawa, Some classes of positive solutions of Δu=Pu on Riemann surfaces, II, Kôdai Math. Sem. Rep., 7 (1955), 15-20. 17) H. Royden, The equation Δu=Pu, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., 271 (1959), 1-27. 18) M. Šur, The Martin boundary for a linear elliptic second order operator, Izv. Akad. Nauk SSSR, 27 (1963), 45-60 (Russian). 19) M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, 1959.
Right : [1] M. Brelot, Étude des intégrales de la chaleur Δu=cu, c≥0, au voisinage d'un point singulier du coefficient, Ann. Sci., Ecole Norm. Sup., 48 (1931), 153-246. [2] C. Constantinescu und A. Cornea, Über einige Problem von M. Heins, Rev. Roumaine Math. Pures Appl., 4 (1959), 277-281. [3] C. Constantinescu und A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, 1963. [4] M. Heins, Riemann surfaces of infinite genus, Ann. of Math., 55 (1952), 296-317. [5] S. Itô, On existence of Green functions and positive superharmonic functions for linear elliptic operators of second order, J. Math. Soc. Japan, 16 (1964), 299-306. [6] S. Itô, Martin boundary for linear elliptic differential operators of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334. [7] O. Kellog, Foundations of Potential Theory, Frederick Ungar, 1929. [8] Z. Kuramochi, An example of a null-boundary Riemann surface, Osaka Math. J., 6 (1954), 83-91. [9] R. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. [10] C. Miranda, Partial Differential Equations of Elliptic Type, Springer, 1970. [11] L. Myrberg, Über die Integration der Differential Gleichung Δu=c(P)u auf offenen Riemannschen Flächen, Math. Scand., 2 (1954), 142-152. [12] L. Myrberg, Über die Existenz der Greenschen Funktion der Gleichung Δu= c(P)u auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., 170 (1954). [13] M. Nakai, The space of non-negative solutions of the equation Δu=Pu on a Riemann surface, Kôdai Math. Sem. Rep., 12 (1960), 151-178. [14] M. Nakai, Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-88. [15] M. Ozawa, Some classes of positive solutions of Δu=Pu on Riemann surfaces, I, Kôdai Math. Sem. Rep., 6 (1954), 121-126. [16] M. Ozawa, Some classes of positive solutions of Δu=Pu on Riemann surfaces, II, Kôdai Math. Sem. Rep., 7 (1955), 15-20. [17] H. Royden, The equation Δu=Pu, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., 271 (1959), 1-27. [18] M. Šur, The Martin boundary for a linear elliptic second order operator, Izv. Akad. Nauk SSSR, 27 (1963), 45-60 (Russian). [19] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, 1959.