訂正日: 2006/09/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) J. L. Alperin, R. Brauer and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc., 151 (1970), 1-261. 2) H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt, J. Algebra, 17 (1971), 525-554. 3) R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a generalized quaternion group, Proc. Nat. Acad. Sci., 45 (1959), 1757-1759. 4) W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 755-1029. 5) D. M. Goldschmidt, 2-Fusion in finite groups, to appear. 6) D. Gorenstein, Finite groups, Harper and Row, New York, 1968. 7) D. Gorenstein, On finite simple groups of characteristic 2 type, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 5-13. 8) D. Gorenstein and J. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, J. Algebra, 2 (1965), 85-151, 218-270, 354-393. 9) K. Harada, Groups with a certain type of Sylow 2-subgroups, J. Math. Soc. Japan, 19 (1967), 303-307. 10) D. G. Higman, Finite permutation groups of rank 3, Math. Z., 86 (1964), 145-156. 11) M. Suzuki, A characterization of the simple groups LF(2, p), J. Fac. Sci. Univ. Tokyo, 6 (1951), 259-293. 12) M. Suzuki, Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc., 99 (1961), 425-470. 13) M. Suzuki, Finite groups of even order in which Sylow 2-subgroups are independent, Ann, of Math., 80 (1964), 58-77. 14) M. Suzuki, Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. of Math., 82 (1965), 191-212. 15) J. G. Thompson, Non-solvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., 74 (1968), 383-437.
Right : [1] J. L. Alperin, R. Brauer and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc., 151 (1970), 1-261. [2] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt, J. Algebra, 17 (1971), 525-554. [3] R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a generalized quaternion group, Proc. Nat. Acad. Sci., 45 (1959), 1757-1759. [4] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 755-1029. [5] D. M. Goldschmidt, 2-Fusion in finite groups, to appear. [6] D. Gorenstein, Finite groups, Harper and Row, New York, 1968. [7] D. Gorenstein, On finite simple groups of characteristic 2 type, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 5-13. [8] D. Gorenstein and J. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, J. Algebra, 2 (1965), 85-151, 218-270, 354-393. [9] K. Harada, Groups with a certain type of Sylow 2-subgroups, J. Math. Soc. Japan, 19 (1967), 303-307. [10] D. G. Higman, Finite permutation groups of rank 3, Math. Z., 86 (1964), 145-156. [11] M. Suzuki, A characterization of the simple groups LF(2, p), J. Fac. Sci. Univ. Tokyo, 6 (1951), 259-293. [12] M. Suzuki, Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc., 99 (1961), 425-470. [13] M. Suzuki, Finite groups of even order in which Sylow 2-subgroups are independent, Ann. of Math., 80 (1964), 58-77. [14] M. Suzuki, Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. of Math., 82 (1965), 191-212. [15] J. G. Thompson, Non-solvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., 74 (1968), 383-437.