訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Right : [1] T. Kubota and H. W. Leopoldt, Eine p-adische Theorie der Zetawerte I, J. Reine Angew. Math., 214/215 (1964), 328-339. [2] K. Iwasawa, Lectures on p-adic L functions, Annals of Mathematical Studies, Number 74, Princeton Univ. Press, Princeton, 1972. [3] H. W. Leopoldt, Eine p-adische Theorie der Zetawerte II, J. Reine Angew. Math., 274/275 (1975), 224-239. [4] Y. Morita, A p-adic analogue of the Γ function, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 255-266. [5] Y. Morita, On Hurwitz-Lerch L-functions, to appear in J. Fac. Sci. Univ. Tokyo. [6] K. Hatada, Master's Thesis, University of Tokyo, 1976. (In Japanese.) [7] P. Cassou-Nogués, Analogues p-adiques de quelques functions arithmétiques, preprint, Publ. Math. Bordeaux, 1974-75, 1-43. [8] J. Diamond, On the values of p-adic L functions at positive integers, (preprint). [9] K. Iwasawa, On p-adic L functions, Ann. of Math., 89 (1969), 198-205. [10] Y. Morita, Examples of p-adic arithmetic functions, Proceedings of International Symposium on Algebraic Number Theory in Kyoto, Japan Society for the Promotion of Science, Tokyo, 1977. [11] J. -P. Serre, Formes modulaires et fonctions zêta p-adiques, Springer Lecture Note in Math., 350 (1973), 191-268. [12] T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non positive integers, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 23 (1976), 393-417. [13] K. Shiratani, Kummer's congruence for generalized Bernoulli numbers and its application, Mem. Fac. Sci. Kyushu Univ., 26 (1972), 119-138. [14] K. Shiratani, On a formula for p-adic L functions, (preprint), to appear in J. Fac. Sci. Univ. Tokyo. [15] K. Shiratani, On a kind of p-adic zeta functions, Proceedings of International Symposium on Algebraic Number Theory in Kyoto, Japan Society for the Promotion of Science, Tokyo, 1977.