訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) M. Brelot, Sur le principe des singularites positives et la notion de source pour l'équation Δu(M)=c(M)u(M) (c_??_0), Ann. Univ. Lyon Sci. Math. Astro., 11 (1948), 9-19. 2) M. Brelot, Éléments de la théorie classique du potentiel, Les cours de Sorbonne, 1959. 3) M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Math., 175, Springer, 1971. 4) M. Godefroid, Sur un article de Kawamura et Nakai a propos du principe de Picard, Bull. Sci. Math., 102 (1978), 295-303. 5) M. Kawamura and M. Nakai, A test of Picard principle for rotation free densities, II, J. Math. Soc. Japan, 28 (1976), 323-342. 6) M. Nakai, A test for Picard principle, Nagoya Math. J., 56 (1974), 363-370. 7) M. Nakai, A test of Picard Principle for rotation free densities, J. Math. Soc. Japan, 27 (1975), 412-431. 8) M. Nakai, Picard principle and Riemann theorem, Tohoku Math. J., 28 (1976), 277-292. 9) M. Ozawa, Some classes of positive solutions of Δu=Pu on Riemann surfaces I, II, Kôdai Math. Sem. Rep., 6 (1954), 121-126, 7 (1955), 15-20.
Right : [1] M. Brelot, Sur le principe des singularites positives et la notion de source pour l'équation Δu(M)=c(M)u(M) (c≥0), Ann. Univ. Lyon Sci. Math. Astro., 11 (1948), 9-19. [2] M. Brelot, Éléments de la théorie classique du potentiel, Les cours de Sorbonne, 1959. [3] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Math., 175, Springer, 1971. [4] M. Godefroid, Sur un article de Kawamura et Nakai a propos du principe de Picard, Bull. Sci. Math., 102 (1978), 295-303. [5] M. Kawamura and M. Nakai, A test of Picard principle for rotation free densities, II, J. Math. Soc. Japan, 28 (1976), 323-342. [6] M. Nakai, A test for Picard principle, Nagoya Math. J., 56 (1974), 363-370. [7] M. Nakai, A test of Picard Principle for rotation free densities, J. Math. Soc. Japan, 27 (1975), 412-431. [8] M. Nakai, Picard principle and Riemann theorem, Tôhoku Math. J., 28 (1976), 277-292. [9] M. Ozawa, Some classes of positive solutions of Δu=Pu on Riemann surfaces I, II, Kôdai Math. Sem. Rep., 6 (1954), 121-126, 7 (1955), 15-20.