訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) M.F. Atiyah, Characters and cohomology of finite groups, Publ. Math. I.H.E.S., 9 (1961), 23-64. 2) M.F. Atiyah, K-Theory and reality, Quart. J. Math. Oxford Ser., 17 (1966), 367-386. 3) S. Araki and M. Murayama, τ-cohomology theories, Japan. J. Math., 4 (1978), 363-416. 4) J.C. Becker, Characteristic classes and K-theory, Lecture Notes in Math., 428, Springer, 1973, 132-143. 5) G.E. Bredon, Equivariant cohomology theories, Lecture Notes in Math., 34, Springer, 1967. 6) G.E. Bredon, Introduction to compact transformation groups, Academic press, 1972. 7) C. Kosniowski, Equivariant cohomology and stable cohommotopy, Math. Ann., 210 (1974), 83-104. 8) G. Nishida, The transfer homomorphism in equivariant generalized cohomology theories, J. Math. Kyoto Univ., 18 (1978), 435-451. 9) G. Nishida, On equivariant Γ-spaces, (preprint). 10) G.B. Segal, Equivariant K-theory, Publ. Math. I.H.E.S., 34 (1968), 129-151. 11) G.B. Segal, Equivariant stable homotopy theory, Actes. Congress. Intern. Math., 2 (1970), 59-63. 12) G.B. Segal, The stable homotopy of complex projective spaces, Quart. J. Math. Oxford Ser., 24 (1973), 1-5. 13) M. Murayama, S-duality in τ-cohomology theories, Publ. Res. Inst. Math. Sci., Kyoto Univ., 16 (1980), 669-692.
Right : [1] M. F. Atiyah, Characters and cohomology of finite groups, Publ. Math. I. H. E. S., 9 (1961), 23-64. [2] M. F. Atiyah, K-Theory and reality, Quart. J. Math. Oxford Ser., 17 (1966), 367-386. [3] S. Araki and M. Murayama, τ-cohomology theories, Japan. J. Math., 4 (1978), 363-416. [4] J. C. Becker, Characteristic classes and K-theory, Lecture Notes in Math., 428, Springer, 1973, 132-143. [5] G. E. Bredon, Equivariant cohomology theories, Lecture Notes in Math., 34, Springer, 1967. [6] G. E. Bredon, Introduction to compact transformation groups, Academic press, 1972. [7] C. Kosniowski, Equivariant cohomology and stable cohommotopy, Math. Ann., 210 (1974), 83-104. [8] G. Nishida, The transfer homomorphism in equivariant generalized cohomology theories, J. Math. Kyoto Univ., 18 (1978), 435-451. [9] G. Nishida, On equivariant Γ-spaces, (preprint). [10] G. B. Segal, Equivariant K-theory, Publ. Math. I. H. E. S., 34 (1968), 129-151. [11] G. B. Segal, Equivariant stable homotopy theory, Actes. Congress. Intern. Math., 2 (1970), 59-63. [12] G. B. Segal, The stable homotopy of complex projective spaces, Quart. J. Math. Oxford Ser., 24 (1973), 1-5. [13] M. Murayama, S-duality in τ-cohomology theories, Publ. Res. Inst. Math. Sci., Kyoto Univ., 16 (1980), 669-692.