Published: 1982 Received: March 09, 1981Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) Harish-Chandra, Harmonic analysis on real reductive groups I, J. Functional Analysis, 19 (1975), 104-204. 2) Harish-Chandra, Harmonic analysis on real reductive groups II, Invent. Math., 36 (1976), 1-55. 3) Harish-Chandra, Harmonic analysis on real reductive groups III, Ann. of Math., 104 (1976), 117-201. 4) K. D. Johnson, Paley-Wiener theorems on groups of split rank one, J. Functional Analysis, 34 (1979), 54-71. 5) T. Kawazoe, An analogue of Paley-Wiener theorem on rank 1 semi-simple Lie groups I, Tokyo J. Math., 2 (1979), 397-407. 6) T. Kawazoe, An analogue of Paley-Wiener theorem on rank 1 semi-simple Lie groups II, Tokyo J. Math., 2 (1979), 409-421. 7) D. Milicic, Asymptotic behaviour of matrix coefficients of the discrete series, Duke Math. J., 44 (1977), 59-88. 8) P. C. Trombi and V. S. Varadarajan, Asymptotic behaviour of eigenfunctions on a semi-simple Lie group; The discrete spectrum, Acta Math., 129 (1972), 237-280. 9) P. C. Trombi and V. S. Varadarajan, Spherical transforms on semi-simple Lie groups, Ann. of Math., 94 (1971), 246-363. 10) G. Warner, Harmonic analysis on semi-simple Lie groups II, Springer-Verlag, Berlin, Heidelberg, New York, 1972. 11) V. S. Varadarajan, Harmonic analysis on real reductive groups, Lecture Notes in Math., 576, Springer-Verlag, 1977. 12) R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis on the 2×2 real unimodular group, Amer. J. Math., 82 (1960), 1-62. 13) R. Lipsman, Harmonic analysis on SL(n, C), J. Functional Analysis, 3 (1969), 126-155. 14) R. J. Stanton and P. A. Tomas, A note on the Kunze-Stein phenomenon, J. Functional Analysis, 29 (1978), 151-159. 15) M. Eguchi and K. Kumahara, Riemann-Lebesgue lemma for real reductive groups, Proc. Japan Acad. Ser. A Math. Sci., 56 (10) (1980), 465-468.
Right : [1] Harish-Chandra, Harmonic analysis on real reductive groups I, J. Functional Analysis, 19 (1975), 104-204. [2] Harish-Chandra, Harmonic analysis on real reductive groups II, Invent. Math., 36 (1976), 1-55. [3] Harish-Chandra, Harmonic analysis on real reductive groups III, Ann. of Math., 104 (1976), 117-201. [4] K. D. Johnson, Paley-Wiener theorems on groups of split rank one, J. Functional Analysis, 34 (1979), 54-71. [5] T. Kawazoe, An analogue of Paley-Wiener theorem on rank 1 semi-simple Lie groups I, Tokyo J. Math., 2 (1979), 397-407. [6] T. Kawazoe, An analogue of Paley-Wiener theorem on rank 1 semi-simple Lie groups II, Tokyo J. Math., 2 (1979), 409-421. [7] D. Milicic, Asymptotic behaviour of matrix coefficients of the discrete series, Duke Math. J., 44 (1977), 59-88. [8] P. C. Trombi and V. S. Varadarajan, Asymptotic behaviour of eigenfunctions on a semi-simple Lie group; The discrete spectrum, Acta Math., 129 (1972), 237-280. [9] P. C. Trombi and V. S. Varadarajan, Spherical transforms on semi-simple Lie groups, Ann. of Math., 94 (1971), 246-363. [10] G. Warner, Harmonic analysis on semi-simple Lie groups II, Springer-Verlag, Berlin, Heidelberg, New York, 1972. [11] V. S. Varadarajan, Harmonic analysis on real reductive groups, Lecture Notes in Math., 576, Springer-Verlag, 1977. [12] R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis on the 2×2 real unimodular group, Amer. J. Math., 82 (1960), 1-62. [13] R. Lipsman, Harmonic analysis on SL(n, C), J. Functional Analysis, 3 (1969), 126-155. [14] R. J. Stanton and P. A. Tomas, A note on the Kunze-Stein phenomenon, J. Functional Analysis, 29 (1978), 151-159. [15] M. Eguchi and K. Kumahara, Riemann-Lebesgue lemma for real reductive groups, Proc. Japan Acad. Ser. A Math. Sci., 56 (10) (1980), 465-468.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -