Published: 1982 Received: November 20, 1980Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) M. A. Armstrong, On the fundamental group of an orbit space, Proc. Cambridge Philos. Soc., 61 (1965), 639-646. 2) H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus, Crystallographic groups of four-dimensional space, John Wiley & Sons, 1978. 3) C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math., 77 (1955), 778-782. 4) A. M. Cohen, Finite complex reflection groups, Ann. Sci. École Norm. Sup., 9 (1976), 379-436. 5) H. S. M. Coxeter, Regular complex polytopes, Cambridge Univ. Press, 1974. 6) D. W. Crowe, Some two dimensional unitary groups generated by three reflections, Canad. J. Math., 13 (1961), 418-426. 7) L. Flatto, Invariants of finite reflection groups, L'enseignement mathématique IIe serie, 24 (1978), 237-292. 8) S. Hattori and M. Yoshida, Local theory of Fuchsian systems with certain discrete monodromy groups III, Funkcial. Ekvac., 22 (1979), 1-40. 9) S. Iitaka, Algebraic geometry I, II, III, Iwanami, 1977. 10) J. Kaneko, S. Tokunaga and M. Yoshida, Complex crystallographic groups II, J. Math. Soc. Japan, 34 (1982), 595-605. 11) G. C. Shephard, Abstract definitions for reflection groups, Canad. J. Math., 9 (1957), 273-276. 12) G.C. Shephard and I.A. Todd, Finite unitary reflection groups, Canad. J. Math., 6 (1954), 274-304. 13) O. V. Shvartsman, Chevalley's theorem for complex crystallographic groups generated by reflections in the affine space C2, Uspehi Mat. Nauk, 34 (1979), 249-250. Translation: Russian Math. Surveys, 34 (1979), 239-240. 14) T. Suwa, Compact quotient spaces of C2 by affine transformation groups, J. Differential Geometry, 19 (1975), 239-252. 15) K. Uchida and H. Yoshihara, Discontinuous groups of affine transformations of C3, Tohoku Math. J., 28 (1976), 89-94. 16) J. A. Wolf, Spaces of constant curvature, McGraw-Hill, 1967. 17) H. Yoshihara, On deformations of hyperelliptic manifolds, Proc. Internat. Symp. on Algebraic Geometry, Kyoto, 1977, 735-737.
Right : [1] M. A. Armstrong, On the fundamental group of an orbit space, Proc. Cambridge Philos. Soc., 61 (1965), 639-646. [2] H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus, Crystallographic groups of four-dimensional space, John Wiley & Sons, 1978. [3] C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math., 77 (1955), 778-782. [4] A. M. Cohen, Finite complex reflection groups, Ann. Sci. École Norm. Sup., 9 (1976), 379-436. [5] H. S. M. Coxeter, Regular complex polytopes, Cambridge Univ. Press, 1974. [6] D. W. Crowe, Some two dimensional unitary groups generated by three reflections, Canad. J. Math., 13 (1961), 418-426. [7] L. Flatto, Invariants of finite reflection groups, L'enseignement mathématique IIe serie, 24 (1978), 237-292. [8] S. Hattori and M. Yoshida, Local theory of Fuchsian systems with certain discrete monodromy groups III, Funkcial. Ekvac., 22 (1979), 1-40. [9] S. Iitaka, Algebraic geometry I, II, III, Iwanami, 1977. [10] J. Kaneko, S. Tokunaga and M. Yoshida, Complex crystallographic groups II, J. Math. Soc. Japan, 34 (1982), 595-605. [11] G. C. Shephard, Abstract definitions for reflection groups, Canad. J. Math., 9 (1957), 273-276. [12] G. C. Shephard and I.A. Todd, Finite unitary reflection groups, Canad. J. Math., 6 (1954), 274-304. [13] O. V. Shvartsman, Chevalley's theorem for complex crystallographic groups generated by reflections in the affine space C2, Uspehi Mat. Nauk, 34 (1979), 249-250. Translation: Russian Math. Surveys, 34 (1979), 239-240. [14] T. Suwa, Compact quotient spaces of C2 by affine transformation groups, J. Differential Geometry, 19 (1975), 239-252. [15] K. Uchida and H. Yoshihara, Discontinuous groups of affine transformations of C3, Tohoku Math. J., 28 (1976), 89-94. [16] J. A. Wolf, Spaces of constant curvature, McGraw-Hill, 1967. [17] H. Yoshihara, On deformations of hyperelliptic manifolds, Proc. Internat. Symp. on Algebraic Geometry, Kyoto, 1977, 735-737.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -