Published: 1983 Received: September 12, 1981Available on J-STAGE: October 20, 2006Accepted: June 26, 1982
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) D.G. Aronson, Regularity properties of flows through porous media, SIAM J. Appl. Math., 17 (1969), 461-467. 2) D.G. Aronson, Regularity properties of flows through porous media: A counterexample, SIAM J. Appl. Math., 19 (1970), 299-307. 3) A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Eagle. wood Cliffs, N.J., 1964. 4) B.H. Gilding, Hölder continuity of solutions of parabolic equations, J. London Math. Soc., 13 (1976), 103-106. 5) B.H. Gilding, Properties of solutions of an equation in the theory of infiltration, Arch. Rational Mech. Anal., 65 (1977), 203-225. 6) B.H. Gilding, A nonlinear degenerate parabolic equation, Ann. Scuola Norm. Sup. Pisa, 4 (1977), 393-432. 7) B.H. Gilding and L. A. Peletier, The Cauchy problem for an equation in the theory of infiltration, Arch. Rational Mech. Anal., 61 (1976), 127-140. 8) W.S.C. Gurney and R.M. Nisbet, The regulation of inhomogeneous populations, J. Theoret. Biol., 52 (1975), 441-457. 9) M.E. Gurtin and R.C. MacCamy, On the diffusion of biological populations, Math. Biosci., 33 (1979), 35-49. 10) W.D. Hamilton, Geometry for the selfish herd, J. Theoret. Biol., 31 (1971), 295-311. 11) O.A. Ladyzenskaja, V.A. Solonikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence, R.I., 1968. 12) T. Nagai and M. Mimura, Asymptotic behavior for a nonlinear degenerate diffusion equation in population dynamics, SIAM J. Appl. Math., (to appear). 13) O.A. Oleinik, A.S. Kalashnikov and Chzou Yui-Lin, The Cauchy problem and boundary value problems for equations of the type of nonstationary filtration, Izv. Akad. Nauk SSSR, 22 (1958), 667-704, (Russian).
Right : [1] D. G. Aronson, Regularity properties of flows through porous media, SIAM J. Appl. Math., 17 (1969), 461-467. [2] D. G. Aronson, Regularity properties of flows through porous media: A counterexample, SIAM J. Appl. Math., 19 (1970), 299-307. [3] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Eagle-wood Cliffs, N. J., 1964. [4] B. H. Gilding, Hölder continuity of solutions of parabolic equations, J. London Math. Soc., 13 (1976), 103-106. [5] B. H. Gilding, Properties of solutions of an equation in the theory of infiltration, Arch. Rational Mech. Anal., 65 (1977), 203-225. [6] B. H. Gilding, A nonlinear degenerate parabolic equation, Ann. Scuola Norm. Sup. Pisa, 4 (1977), 393-432. [7] B. H. Gilding and L. A. Peletier, The Cauchy problem for an equation in the theory of infiltration, Arch. Rational Mech. Anal., 61 (1976), 127-140. [8] W. S. C. Gurney and R. M. Nisbet, The regulation of inhomogeneous populations, J. Theoret. Biol., 52 (1975), 441-457. [9] M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Math. Biosci., 33 (1979), 35-49. [10] W. D. Hamilton, Geometry for the selfish herd, J. Theoret. Biol., 31 (1971), 295-311. [11] O. A. Ladyzenskaja, V. A. Solonikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence, R. I., 1968. [12] T. Nagai and M. Mimura, Asymptotic behavior for a nonlinear degenerate diffusion equation in population dynamics, SIAM J. Appl. Math., (to appear). [13] O. A. Oleinik, A. S. Kalashnikov and Chzou Yui-Lin, The Cauchy problem and boundary value problems for equations of the type of nonstationary filtration, Izv. Akad. Nauk SSSR, 22 (1958), 667-704, (Russian).
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -