Published: 1983 Received: July 12, 1982Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) J.L. Alperin, R. Brauer and D. Gorenstein, Finite simple groups of 2-rank two, Scripta Math., 29 (1973), 191-214. 2) S. Amitsur, Finite subgroups of division rings, Trans. Amer. Math. Soc., 80 (1955), 361-386. 3) C. Cato, The orders of the known simple groups as far as one trillion, Math. Comp., 31 (1977), 574-577. 4) L. Dornhoff, Group representation theory, Part A, Marcel Dekker, New York, 1971. 5) W. Feit, Characters of finite groups, Benjamin, New York, 1967. 6) D. Garbe and J.L. Mennicke, Some remarks on the Mathieu groups, Canad. Math. Bull., 7 (1964), 201-212. 7) D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Amer. Math. Soc., 147, 1974. 8) R. Gow, Schur indices of some groups of Lie type, J. Algebra, 42 (1976), 102-120. 9) R. Griess, Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc., 183 (1973), 355-421. 10) M. Hikari, Multiplicative p-subgroups of simple algebras, Osaka J. Math., 10 (1973), 369-374. 11) M. Hikari, On finite multiplicative subgroups of simple algebras of degree 2, J. Math. Soc. Japan, 28 (1976), 737-748. 12) B. Huppert, Endliche Gruppen I, Springer, Berlin, 1976. 13) G.J. Janusz, Simple components of QSL (2, q)), Comm. Algebra, 1 (1974), 1-22. 14) A.R. MacWilliams, On 2-groups with no normal abelian subgroups of rank 3, and their occurrence as Sylow 2-subgroups of finite simple groups, Trans. Amer. Math. Soc., 150 (1970), 345-408. 15) R. Steinberg, Lectures on Chevalley groups, Yale University Notes, New Haven, Conn., 1967.
Right : [1] J. L. Alperin, R. Brauer and D. Gorenstein, Finite simple groups of 2-rank two, Scripta Math., 29 (1973), 191-214. [2] S. Amitsur, Finite subgroups of division rings, Trans. Amer. Math. Soc., 80 (1955), 361-386. [3] C. Cato, The orders of the known simple groups as far as one trillion, Math. Comp., 31 (1977), 574-577. [4] L. Dornhoff, Group representation theory, Part A, Marcel Dekker, New York, 1971. [5] W. Feit, Characters of finite groups, Benjamin, New York, 1967. [6] D. Garbe and J. L. Mennicke, Some remarks on the Mathieu groups, Canad. Math. Bull., 7 (1964), 201-212. [7] D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Amer. Math. Soc., 147, 1974. [8] R. Gow, Schur indices of some groups of Lie type, J. Algebra, 42 (1976), 102-120. [9] R. Griess, Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc., 183 (1973), 355-421. [10] M. Hikari, Multiplicative p-subgroups of simple algebras, Osaka J. Math., 10 (1973), 369-374. [11] M. Hikari, On finite multiplicative subgroups of simple algebras of degree 2, J. Math. Soc. Japan, 28 (1976), 737-748. [12] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1976. [13] G. J. Janusz, Simple components of Q[SL (2, q)], Comm. Algebra, 1 (1974), 1-22. [14] A. R. MacWilliams, On 2-groups with no normal abelian subgroups of rank 3, and their occurrence as Sylow 2-subgroups of finite simple groups, Trans. Amer. Math. Soc., 150 (1970), 345-408. [15] R. Steinberg, Lectures on Chevalley groups, Yale University Notes, New Haven, Conn., 1967.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -