Published: 1983 Received: September 13, 1982Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor M. Ozawa on the occasion of his 60th birthday
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica, 7 (1933), 5-31. 2) S. S. Chern and R. Osserman, Complete minimal surfaces in euclidean n-space, J. Analyse Math., 19 (1967), 15-34. 3) H. Fujimoto, The defect relations for the derived curves of a holomorphic curve in Pn (C), Tohoku Math. J., 34 (1982), 141-160. 4) H. Fujimoto, On the Gauss map of a complete minimal surface in Rm, J. Math. Soc. Japan, 35 (1983), 279-288. 5) W. K. Hayman, Meromorphic functions, Oxford Mathematical Monograph, Clarendon Press, Oxford, 1964. 6) W. K. Hayman and P. B. Kennedy, Subharmonic functions, Academic Press, London, 1976. 7) D. A. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Amer. Math. Soc. Memoir, 236, 1980. 8) H. B. Lawson, Lectures on minimal submanifolds, Vol. 1, Publish or Perish Inc., Berkeley, 1980. 9) R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929. 10) R. Osserman, Global properties of minimal surfaces in E3 and En, Ann. of Math., 80 (1964), 340-364. 11) R. Osserman, A survey of minimal surfaces, Van Nostrand Reinhold, New York, 1969. 12) R. Osserman, Minimal surfaces, Gauss maps, total curvature, eigenvalue estimates, and stability, The Chern Symposium 1979, Springer-Verlag. 13) F. Xavier, The Gauss map of a complete non-flat minimal surface cannot omit 7 points of the sphere, Ann. of Math., 113 (1981), 211-214. 14) S. T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670.
Right : [1] H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica, 7 (1933), 5-31. [2] S. S. Chern and R. Osserman, Complete minimal surfaces in euclidean n-space, J. Analyse Math., 19 (1967), 15-34. [3] H. Fujimoto, The defect relations for the derived curves of a holomorphic curve in Pn (C), Tôhoku Math. J., 34 (1982), 141-160. [4] H. Fujimoto, On the Gauss map of a complete minimal surface in Rm, J. Math. Soc. Japan, 35 (1983), 279-288. [5] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monograph, Clarendon Press, Oxford, 1964. [6] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Academic Press, London, 1976. [7] D. A. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Amer. Math. Soc. Memoir, 236, 1980. [8] H. B. Lawson, Lectures on minimal submanifolds, Vol. 1, Publish or Perish Inc., Berkeley, 1980. [9] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929. [10] R. Osserman, Global properties of minimal surfaces in E3 and En, Ann. of Math., 80 (1964), 340-364. [11] R. Osserman, A survey of minimal surfaces, Van Nostrand Reinhold, New York, 1969. [12] R. Osserman, Minimal surfaces, Gauss maps, total curvature, eigenvalue estimates, and stability, The Chern Symposium 1979, Springer-Verlag. [13] F. Xavier, The Gauss map of a complete non-flat minimal surface cannot omit 7 points of the sphere, Ann. of Math., 113 (1981), 211-214. [14] S. T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -