Published: 1983 Received: June 05, 1982Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) A. Borel, Seminar on Transformation Groups, Ann. of Math. Studies, 46, Princeton Univ. Press, 1960. 2) G. Bredon, Sheaf Theory, McGraw-Hill, New York, 1967. 3) P. E. Conner, Orbits of uniform dimension, Michigan Math. J., 6(1958), 25-32. 4) D. Burghelea and R. Schultz, On the semi-simple degree of symmetry, Bull. Soc. Math. France, 103 (1975), 431-440. 5) H. Donnelly and R. Schultz, Compact group actions and maps into aspherical manifolds, preprint. 6) N. Hitchen, Harmonic spinors, Advances in Math., 14 (1974), 1-55 7) B. Lawson, Jr. and S. T. Yau, Scalar curvature, non-abelian group actions and the degree of symmetry of exotic spheres, Comm. Math. Helv., 49(1974), 232-244. 8) J. Milnor, Remarks concerning spin manifolds, Differential and Combinatorial Topology, a Symposium in Honor of M. Morse, Princeton Univ. Press, 1965, 55-62. 9) R. Schoen and S. T. Yau, Compact group actions and the topology of manifolds with non-positive curvature, Topology, 18(1979), 361-380. 10) T. E. Stewart, Lifting group actions in fibre bundles, Ann. of Math., 74 (1961), 192-198. 11) R. Washiyama and T. Watabe, On the degree of symmetry of a certain manifold, J. Math. Soc. Japan, 35 (1983), 53-58.
Right : [1] A. Borel, Seminar on Transformation Groups, Ann. of Math. Studies, 46, Princeton Univ. Press, 1960. [2] G. Bredon, Sheaf Theory, McGraw-Hill, New York, 1967. [3] P. E. Conner, Orbits of uniform dimension, Michigan Math. J., 6 (1958), 25-32. [4] D. Burghelea and R. Schultz, On the semi-simple degree of symmetry, Bull. Soc. Math. France, 103 (1975), 431-440. [5] H. Donnelly and R. Schultz, Compact group actions and maps into aspherical manifolds, preprint. [6] N. Hitchen, Harmonic spinors, Advances in Math., 14 (1974), 1-55 [7] B. Lawson, Jr. and S. T. Yau, Scalar curvature, non-abelian group actions and the degree of symmetry of exotic spheres, Comm. Math. Helv., 49 (1974), 232-244. [8] J. Milnor, Remarks concerning spin manifolds, Differential and Combinatorial Topology, a Symposium in Honor of M. Morse, Princeton Univ. Press, 1965, 55-62. [9] R. Schoen and S. T. Yau, Compact group actions and the topology of manifolds with non-positive curvature, Topology, 18 (1979), 361-380. [10] T. E. Stewart, Lifting group actions in fibre bundles, Ann. of Math., 74 (1961), 192-198. [11] R. Washiyama and T. Watabe, On the degree of symmetry of a certain manifold, J. Math. Soc. Japan, 35 (1983), 53-58.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -