訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) L. Hörmander, The existence of wave operators in scattering theory, Math. Z., 146 (1976), 69-91. 2) H. Kumano-go, A calculus of Fourier integral operators on Rn and the fundamental solution for an operator of hyperbolic type, Comm. Partial Differential Equations, 1 (1976), 1-44. 3) H. Kumano-go and M. Nagase, Pseudo-differential operators with non-regular symbols and applications, Funkcialaj Ekvacioj, 21(1978), 151-192. 4) P. D. Lax and R. S. Phillips, Scattering Theory, Academic Press, New York, 1967. 5) R. B. Melrose, Singularities and energy decay in acoustic scattering, Duke Math. J., 46(1979), 43-59. 6) C. H. Morawetz, J. V. Ralston, and W. A. Strauss, Decay of solutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math., 30 (1977), 447-508. 7) M. Murata, Rate of decay of local energy and spectral properties of elliptic operators, Japan. J. Math., 6(1980), 77-127. 8) J. V. Ralston, Local decay of solutions of conservative first order hyperbolic systems in odd dimensional space, Trans. Amer. Math. Soc., 194(1974), 27-51. 9) J. Rauch, Asymptotic behavior of solutions to hyperbolic partial differential equations with zero speeds, Comm. Pure Appl. Math., 31(1978), 431-480. 10) B. Vainberg, On the short wave asymptotic behavior of solutions of stationary problems and the asymptotic behavior as t→∞ of solutions of non-stationary problems, Russian Math. Surveys, 30; 2 (1975), 1-58.
Right : [1] L. Hörmander, The existence of wave operators in scattering theory, Math. Z., 146 (1976), 69-91. [2] H. Kumano-go, A calculus of Fourier integral operators on Rn and the fundamental solution for an operator of hyperbolic type, Comm. Partial Differential Equations, 1 (1976), 1-44. [3] H. Kumano-go and M. Nagase, Pseudo-differential operators with non-regular symbols and applications, Funkcialaj Ekvacioj, 21 (1978), 151-192. [4] P. D. Lax and R. S. Phillips, Scattering Theory, Academic Press, New York, 1967. [5] R. B. Melrose, Singularities and energy decay in acoustic scattering, Duke Math. J., 46 (1979), 43-59. [6] C. H. Morawetz, J. V. Ralston, and W. A. Strauss, Decay of solutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math., 30 (1977), 447-508. [7] M. Murata, Rate of decay of local energy and spectral properties of elliptic operators, Japan. J. Math., 6 (1980), 77-127. [8] J. V. Ralston, Local decay of solutions of conservative first order hyperbolic systems in odd dimensional space, Trans. Amer. Math. Soc., 194 (1974), 27-51. [9] J. Rauch, Asymptotic behavior of solutions to hyperbolic partial differential equations with zero speeds, Comm. Pure Appl. Math., 31 (1978), 431-480. [10] B. Vainberg, On the short wave asymptotic behavior of solutions of stationary problems and the asymptotic behavior as t→∞ of solutions of non-stationary problems, Russian Math. Surveys, 30; 2 (1975), 1-58.