Published: 1985 Received: August 29, 1983Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) J. W. Cannon and C. D. Feustel, Essential embeddings of annuli and Möbius bands in 3-manifolds, Trans. Amer. Math. Soc., 215 (1976), 219-239. 2) R. Courant, Dirichlet's Principle, Conformal Mapping and Minimal Surfaces, Interscience, New York, 1960. 3) M. Freedman, J. Hass and P. Scott, Least area incompressible surfaces in 3-manifolds, Invent. Math., 71 (1983), 609-642. 4) A. Friedman, Partial Differential Equations, R. E. Krieger Publishing Company, New York, 1969. 5) R. D. Gulliver, R. Osserman and H. L. Royden, A theory of branched immersions of surfaces, Amer. J. Math., 95 (1973), 750-812. 6) W. H. Jaco, Lectures on Three-manifold Topology, Amer. Math. Soc., Providence, 1980. 7) W. Jäger, Behavior of minimal surfaces with free boundaries, Comm. Pure Appl. Math., 23 (1970), 803-818. 8) T. Kobayashi, Equivariant annulus theorem for 3-manifolds, Proc. Japan Acad., 59 (1983), 403-406. 9) W. H. Meeks and S. T. Yau, The classical Plateau problem and the topology of three-dimensional manifolds, Topology, 21 (1982), 409-442. 10) W. H. Meeks and S. T. Yau, Topology of three dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math., 112 (1980), 441-484. 11) W. H. Meeks and S. T. Yau, The equivariant Dehn's lemma and loop theorem, Comm. Math. Helv., 56 (1981), 225-239. 12) W. H. Meeks and S. T. Yau, The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z., 179 (1982), 151-168. 13) C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966. 14) R. Schoen and S. T. Yau, Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature, Ann. of Math., 110 (1979), 127-142. 15) F. Waldhausen, On the determination of some bounded 3-manifolds by their fundamental groups alone. In: Proceeding of International Symposium on Topology and its Applications, 331-332. Herceg-Novi, 1968.
Right : [1] J. W. Cannon and C. D. Feustel, Essential embeddings of annuli and Möbius bands in 3-manifolds, Trans. Amer. Math. Soc., 215 (1976), 219-239. [2] R. Courant, Dirichlet's Principle, Conformal Mapping and Minimal Surfaces, Interscience, New York, 1960. [3] M. Freedman, J. Hass and P. Scott, Least area incompressible surfaces in 3-manifolds, Invent. Math., 71 (1983), 609-642. [4] A. Friedman, Partial Differential Equations, R. E. Krieger Publishing Company, New York, 1969. [5] R. D. Gulliver, R. Osserman and H. L. Royden, A theory of branched immersions of surfaces, Amer. J. Math., 95 (1973), 750-812. [6] W. H. Jaco, Lectures on Three-manifold Topology, Amer. Math. Soc., Providence, 1980. [7] W. Jäger, Behavior of minimal surfaces with free boundaries, Comm. Pure Appl. Math., 23 (1970), 803-818. [8] T. Kobayashi, Equivariant annulus theorem for 3-manifolds, Proc. Japan Acad., 59 (1983), 403-406. [9] W. H. Meeks and S. T. Yau, The classical Plateau problem and the topology of three-dimensional manifolds, Topology, 21 (1982), 409-442. [10] W. H. Meeks and S. T. Yau, Topology of three dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math., 112 (1980), 441-484. [11] W. H. Meeks and S. T. Yau, The equivariant Dehn's lemma and loop theorem, Comm. Math. Helv., 56 (1981), 225-239. [12] W. H. Meeks and S. T. Yau, The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z., 179 (1982), 151-168. [13] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966. [14] R. Schoen and S. T. Yau, Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature, Ann. of Math., 110 (1979), 127-142. [15] F. Waldhausen, On the determination of some bounded 3-manifolds by their fundamental groups alone. In: Proceeding of International Symposium on Topology and its Applications, 331-332. Herceg-Novi, 1968.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -