1) Department of Mathematics Faculty of Science Kyoto University
2) Department of Mathematics Faculty of Science Kyoto University
訂正後 :
1) Department of Mathematics Faculty of Science Kyoto University
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc., 73(1968), 890-896. 2) D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal., 25 (1967), 81-122. 3) P. Calderoni and M. Pulvirenti, Propagation of chaos for Burgers equation, Ann. Inst. H. Poincaré, Sect. A Physique Théorique, 39 (1983), 85-97. 4) E. Gutkin and M. Kac, Propagation of chaos and the Burgers equation, SIAM J. Appl. Math., 43 (1983), 971-980. 5) H. P. McKean, Propagation of chaos for a class of nonlinear parabolic equation, Lecture series in differential equations, Session 7: Catholic Univ., 1967. 6) J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958), 931-954. 7) H. Osada, Moment estimates for parabolic equations in the divergence form, to appear in J. Math. Kyoto Univ. 8) A. S. Sznitman, Nonlinear reflecting diffusion process and the propagation of chaos and fluctuations associated, J. Func. Anal., 56 (1984), 311-339. 9) H. Tanaka, Some probabilistic problems in the spatially homogeneous Boltzmann equation, Proc. of IFIP-ISI conf. on theory and applications of random fields, Bangalore, 1982.
Right : [1] D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc., 73 (1968), 890-896. [2] D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal., 25 (1967), 81-122. [3] P. Calderoni and M. Pulvirenti, Propagation of chaos for Burgers equation, Ann. Inst. H. Poincaré, Sect. A Physique Théorique, 39 (1983), 85-97. [4] E. Gutkin and M. Kac, Propagation of chaos and the Burgers equation, SIAM J. Appl. Math., 43 (1983), 971-980. [5] H. P. McKean, Propagation of chaos for a class of nonlinear parabolic equation, Lecture series in differential equations, Session 7: Catholic Univ., 1967. [6] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958), 931-954. [7] H. Osada, Moment estimates for parabolic equations in the divergence form, to appear in J. Math. Kyoto Univ. [8] A. S. Sznitman, Nonlinear reflecting diffusion process and the propagation of chaos and fluctuations associated, J. Func. Anal., 56 (1984), 311-339. [9] H. Tanaka, Some probabilistic problems in the spatially homogeneous Boltzmann equation, Proc. of IFIP-ISI conf. on theory and applications of random fields, Bangalore, 1982.