Published: 1987 Received: August 28, 1985Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) Y. Hatakeyama, Some notes on the group of automorphisms of contact and symplectic structures, Tohoku Math. J., 18 (1966), 338-347. 2) A. A. Kirillov, Local Lie algebras, Russian Math. Surveys, 31-4 (1976), 55-75 (from Uspekhi Mat. Nauk., 31-4 (1976), 57-76). 3) C.-M. Marle, Lie group actions on a canonical manifold, Symplectic Geometry (Toulouse, 1981), Res. Notes in Math., 80, Pitman, Boston-London, 1983, pp. 144-166. 4) K. Mikami, The existence of a coadjoint equivariant momentum mapping for a semidirect product, Proc. Amer. Math. Soc., 82 (1981), 465-469. 5) R. Ouzilou, Hamiltonian actions on Poisson manifolds, Symplectic Geometry (Toulouse, 1981), Res. Notes in Math., 80, Pitman, Boston-London, 1983, pp. 172-183. 6) J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970. 7) W. M. Tulczyjew, Poisson brackets and canonical manifolds, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 931-935. 8) W. M. Tulczyjew, The graded Lie algebra of multivector fields and the generalized Lie derivative of forms, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 937-942. 9) A. Weinstein, Lectures on symplectic manifolds, CBMS Regional Conf. Ser. in Math., 29, Amer. Math. Soc., Providence, 1977. 10) A. Weinstein, The local structure of Poisson manifolds, J. Differential Geometry, 18 (1983), 523-557.
Right : [1] Y. Hatakeyama, Some notes on the group of automorphisms of contact and symplectic structures, Tôhoku Math. J., 18 (1966), 338-347. [2] A. A. Kirillov, Local Lie algebras, Russian Math. Surveys, 31-4 (1976), 55-75 (from Uspekhi Mat. Nauk., 31-4 (1976), 57-76). [3] C.-M. Marle, Lie group actions on a canonical manifold, Symplectic Geometry (Toulouse, 1981), Res. Notes in Math., 80, Pitman, Boston-London, 1983, pp. 144-166. [4] K. Mikami, The existence of a coadjoint equivariant momentum mapping for a semidirect product, Proc. Amer. Math. Soc., 82 (1981), 465-469. [5] R. Ouzilou, Hamiltonian actions on Poisson manifolds, Symplectic Geometry (Toulouse, 1981), Res. Notes in Math., 80, Pitman, Boston-London, 1983, pp. 172-183. [6] J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970. [7] W. M. Tulczyjew, Poisson brackets and canonical manifolds, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 931-935. [8] W. M. Tulczyjew, The graded Lie algebra of multivector fields and the generalized Lie derivative of forms, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 937-942. [9] A. Weinstein, Lectures on symplectic manifolds, CBMS Regional Conf. Ser. in Math., 29, Amer. Math. Soc., Providence, 1977. [10] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geometry, 18 (1983), 523-557.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -