訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) B. Y. Chen, On the total curvature of immersed manifolds, I: An inequality of Fenchel-Borsuk-Willmore, Amer. J. Math., 93 (1971), 148-162. 2) S. S. Chern, On the kinematic formula in integral geometry, J. Math. Mech., 16 (1966), 101-118. 3) B. Guillmein and A. Pollack, Differential Topology, Prentice-Hall, 1974. 4) A. Gray, Comparison theorems for the volumes of tubes as generalizations of the Weyl tube formula, Topology, 21 (1982), 201-228. 5) R. Langevin and T. Shifrin, Polar varieties and integral geometry, Amer. J. Math., 104 (1982), 553-605. 6) L. A. Santalo, Integral geometry and geometric probability, Encyclopedia of Mathematics and Its Applications, Addison-Wesley, 1976. 7) E. Teufel, Eine differentialtopologische Berechnung der Totalen Krümmung und Totalen Absolutkrümmung in der sphärischen Differentialgeometrie, Manuscripta Math., 31 (1980), 119-147. 8) E. Teufel, Anwendung der differentialtopologischen Berechnung der Totalen Krümmung und Totalen Absolutkrümmung in der sphärischen Differentialgeometrie, Manuscripta Math., 32 (1980), 239-262. 9) E. Teufel, Differential topology and the computation of total absolute curvature, Math. Ann., 258 (1982), 471-480. 10) H. Weyl, On the volume of tubes, Amer. J. Math., 61 (1939), 461-472.
Right : [1] B. Y. Chen, On the total curvature of immersed manifolds, I: An inequality of Fenchel-Borsuk-Willmore, Amer. J. Math., 93 (1971), 148-162. [2] S. S. Chern, On the kinematic formula in integral geometry, J. Math. Mech., 16 (1966), 101-118. [3] B. Guillmein and A. Pollack, Differential Topology, Prentice-Hall, 1974. [4] A. Gray, Comparison theorems for the volumes of tubes as generalizations of the Weyl tube formula, Topology, 21 (1982), 201-228. [5] R. Langevin and T. Shifrin, Polar varieties and integral geometry, Amer. J. Math., 104 (1982), 553-605. [6] L. A. Santalo, Integral geometry and geometric probability, Encyclopedia of Mathematics and Its Applications, Addison-Wesley, 1976. [7] E. Teufel, Eine differentialtopologische Berechnung der Totalen Krümmung und Totalen Absolutkrümmung in der sphärischen Differentialgeometrie, Manuscripta Math., 31 (1980), 119-147. [8] E. Teufel, Anwendung der differentialtopologischen Berechnung der Totalen Krümmung und Totalen Absolutkrümmung in der sphärischen Differentialgeometrie, Manuscripta Math., 32 (1980), 239-262. [9] E. Teufel, Differential topology and the computation of total absolute curvature, Math. Ann., 258 (1982), 471-480. [10] H. Weyl, On the volume of tubes, Amer. J. Math., 61 (1939), 461-472.