Published: 1987 Received: January 10, 1985Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to the memory of late Professor Schichiro Oka
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) J. F. Adams, The sphere considered as an H-space mod p, Quart. J. Math., 12 (1961), 52-60. 2) M. Arkowitz, Localization and H-spaces, Lecture Notes Series, 44, Mathematik Institut, Aarhus Univ., Aarhus, 1976. 3) G. E. Bredon, Equivariant cohomology theories, Lecture Notes in Math., 34, Springer, 1967. 4) M. L. Curtis and G. Mislin, H-spaces which are bundles over S7, J. Pure Appl. Alg., 1 (1971), 27-40. 5) P. Hilton and J. Roitberg, On principal S3-bundles over spheres, Ann. of Math., 90 (1969), 91-107. 6) K. Iriye, Hopf τ-spaces and τ-homotopy groups, J. Math. Kyoto Univ., 22 (1983), 719-727, 7) T. Matumoto, On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 18 (1971-72), 363-374. 8) T. Matumoto, N. Minami and M. Sugawara, On the set of free homotopy classes and Brown's construction, Hiroshima Math. J., 14 (1984), 359-369. 9) J. P. May, J. McClure and G. Triantafillou, Equivariant localization, Bull. London Math. Soc., 14 (1982), 223-230. 10) E. H. Spanier, Algebraic topology, McGraw-Hill, 1966. 11) G. Triantafillou, Rationalization of Hopf G-spaces, Math. Z., 182 (1983), 485-500. 12) S. Warner, Equivariant homotopy theory and Milnor's theorem, Trans. Amer. Math. Soc., 258 (1980), 351-368. 13) A. Zabrodsky, Homotopy associativity and finite CW-complexes, Topology, 9 (1970) 121-128. 14) A. Zabrodsky, On sphere extensions of classical Lie groups, Algebraic Topology, Proc. Symp. Pure Math., 22, 1971, pp. 279-283. 15) A. Zabrodsky, On the construction of new finite CW H-spaces, Invent. Math., 16 (1972), 200-216. 16) A. Zabrodsky, Hopf spaces, North-Holland Math. Studies, 22, 1976.
Right : [1] J. F. Adams, The sphere considered as an H-space mod p, Quart. J. Math., 12 (1961), 52-60. [2] M. Arkowitz, Localization and H-spaces, Lecture Notes Series, 44, Mathematik Institut, Aarhus Univ., Aarhus, 1976. [3] G. E. Bredon, Equivariant cohomology theories, Lecture Notes in Math., 34, Springer, 1967. [4] M. L. Curtis and G. Mislin, H-spaces which are bundles over S7, J. Pure Appl. Alg., 1 (1971), 27-40. [5] P. Hilton and J. Roitberg, On principal S3-bundles over spheres, Ann. of Math., 90 (1969), 91-107. [6] K. Iriye, Hopf τ-spaces and τ-homotopy groups, J. Math. Kyoto Univ., 22 (1983), 719-727, [7] T. Matumoto, On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 18 (1971-72), 363-374. [8] T. Matumoto, N. Minami and M. Sugawara, On the set of free homotopy classes and Brown's construction, Hiroshima Math. J., 14 (1984), 359-369. [9] J. P. May, J. McClure and G. Triantafillou, Equivariant localization, Bull. London Math. Soc., 14 (1982), 223-230. [10] E. H. Spanier, Algebraic topology, McGraw-Hill, 1966. [11] G. Triantafillou, Rationalization of Hopf G-spaces, Math. Z., 182 (1983), 485-500. [12] S. Warner, Equivariant homotopy theory and Milnor's theorem, Trans. Amer. Math. Soc., 258 (1980), 351-368. [13] A. Zabrodsky, Homotopy associativity and finite CW-complexes, Topology, 9 (1970) 121-128. [14] A. Zabrodsky, On sphere extensions of classical Lie groups, Algebraic Topology, Proc. Symp. Pure Math., 22, 1971, pp. 279-283. [15] A. Zabrodsky, On the construction of new finite CW H-spaces, Invent. Math., 16 (1972), 200-216. [16] A. Zabrodsky, Hopf spaces, North-Holland Math. Studies, 22, 1976.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -