Published: 1987 Received: January 05, 1984Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) A. O. L. Atkin and J. Lehner, Hecke operators on Γ0(m), Math. Ann., 185 (1970), 134-160. 2) V. G. Berkovic, The rational points on the jacobians of modular curves, Math. USSR Sbornik, 30-4 (1976), 485-500. 3) P. Deligne and M. Rapoport, Schémas de modules des courbes elliptiques, Proc. International Summer School on Modular Functions, Antwerp 1972, Vol. II, Lecture Notes in Math., 349, Springer, 1973. 4) N. Ishii and F. Momose, Hyperelliptic modular curves, to appear. 5) M. A. Kenku, The modular curve X0(39) and rational isogeny, Math. Proc. Cambridge Philos. Soc., 85 (1979), 21-23. 6) M. A. Kenku, The modular curves X0(65) and X0(91) and rational isogeny, Math. Cambridge Philos. Soc., 87 (1980), 15-20. 7) M. A. Kenku, The modular curve X0(169) and rational isogeny, J. London Math. Soc. (2), 22 (1980), 239-244. 8) M. A. Kenku, On the modular curves X0(125), X1(25) and X1(49), J. London Math. Soc. (2), 23 (1981), 415-427. 9) B. Mazur, Modular curves and the Eisenstein ideals, Publ. Math. I.H.E.S., 47, 1977. 10) B. Mazur, Rational isogenies of prime degree, Invent. Math., 44 (1978), 129-162. 11) B. Mazur and H. P. F. Swinnerton-Deyer, Arithmetic of Weil curves, Invent. Math., 25 (1974), 1-61. 12) J. F. Mestre, Points rationnels de la courbe modulaire X0(169), Ann. Inst. Fourier (Grenoble), 30-2 (1980), 17-27. 13) F. Momose, Rational points on the modular curves Xsplit(p), Compositio Math., 52 (1984), 115-137. 14) F. Momose, Rational points on the modular curves X+0(pr), to appear. 15) A. Ogg, Über die Automorphismengruppe von X0(N), Math. Ann., 228 (1977), 279-292. 16) A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France, 102 (1974), 449-462. 17) F. Oort and J. Tate, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4), 3(1970), 1-21. 18) M. Raynaud, Spécialisation du foncteur de Picard, Publ. Math. I.H.E.S., 38, 1970, pp. 27-76. 19) M. Raynaud, Schémas en groupes de type (p, ..., p), Bull. Soc. Math. France, 102 (1974), 241-280. 20) K. A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Ann. of Math., 101 (1975), 555-562. 21) J. P. Serre, Propriétés galoissiennes des points d'ordre fini des courbes elliptiques, Invent. Math., 15 (1972), 259-331. 22) B. J. Birch and W. Kuyk ed., Modular functions of one variable IV, Lecture Notes in Math., 476, Springer, 1975.
Right : [1] A. O. L. Atkin and J. Lehner, Hecke operators on Γ0(m), Math. Ann., 185 (1970), 134-160. [2] V. G. Berkovic, The rational points on the jacobians of modular curves, Math. USSR Sbornik, 30-4 (1976), 485-500. [3] P. Deligne and M. Rapoport, Schémas de modules des courbes elliptiques, Proc. International Summer School on Modular Functions, Antwerp 1972, Vol. II, Lecture Notes in Math., 349, Springer, 1973. [4] N. Ishii and F. Momose, Hyperelliptic modular curves, to appear. [5] M. A. Kenku, The modular curve X0(39) and rational isogeny, Math. Proc. Cambridge Philos. Soc., 85 (1979), 21-23. [6] M. A. Kenku, The modular curves X0(65) and X0(91) and rational isogeny, Math. Cambridge Philos. Soc., 87 (1980), 15-20. [7] M. A. Kenku, The modular curve X0(169) and rational isogeny, J. London Math. Soc. (2), 22 (1980), 239-244. [8] M. A. Kenku, On the modular curves X0(125), X1(25) and X1(49), J. London Math. Soc. (2), 23 (1981), 415-427. [9] B. Mazur, Modular curves and the Eisenstein ideals, Publ. Math. I. H. E. S., 47, 1977. [10] B. Mazur, Rational isogenies of prime degree, Invent. Math., 44 (1978), 129-162. [11] B. Mazur and H. P. F. Swinnerton-Deyer, Arithmetic of Weil curves, Invent. Math., 25 (1974), 1-61. [12] J. F. Mestre, Points rationnels de la courbe modulaire X0(169), Ann. Inst. Fourier (Grenoble), 30-2 (1980), 17-27. [13] F. Momose, Rational points on the modular curves Xsplit(p), Compositio Math., 52 (1984), 115-137. [14] F. Momose, Rational points on the modular curves X+0(pr), to appear. [15] A. Ogg, Über die Automorphismengruppe von X0(N), Math. Ann., 228 (1977), 279-292. [16] A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France, 102 (1974), 449-462. [17] F. Oort and J. Tate, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4), 3 (1970), 1-21. [18] M. Raynaud, Spécialisation du foncteur de Picard, Publ. Math. I. H. E. S., 38, 1970, pp. 27-76. [19] M. Raynaud, Schémas en groupes de type (p,…,p), Bull. Soc. Math. France, 102 (1974), 241-280. [20] K. A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Ann. of Math., 101 (1975), 555-562. [21] J. P. Serre, Propriétés galoissiennes des points d'ordre fini des courbes elliptiques, Invent. Math., 15 (1972), 259-331. [22] B. J. Birch and W. Kuyk ed., Modular functions of one variable IV, Lecture Notes in Math., 476, Springer, 1975.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -