Published: 1987 Received: October 16, 1985Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: TITLEDetails: Wrong : √<Morita> theory-Formal ring laws and monoidal equivalences of categories of bimodules- Right : √Morita theory
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : To the memory of Professor Akira Hattori Right : Formal ring laws and monoidal equivalences of categories of bimodules
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) S. Eilenberg and G. M. Kelly, Closed categories, Proc. Conf. Categorical Algebra, La Jolla 1965, Springer-Verlag, 1966, pp. 421-562. 2) B. Pareigis, Morita equivalence of module categories with tensor products, Comm. Algebra, 9 (1981), 1455-1477. 3) D. Riffelmacher, Multiplication alteration and related rigidity properties of algebras, Pacific J. Math., 71 (1977), 139-157. 4)=[MA) M. Sweedler, Multiplication alteration by two-cocycles, Illinois J. Math., 15 (1971), 302-323. 5) [MA) M. Sweedler, Groups of simple algebras, Publ. Math. I.H.E.S., 44 (1975), 79-189. 6)=[GA) M. Takeuchi, Groups of algebras over A⊗A, J. Math. Soc. Japan, 29 (1977), 459-492. 7)=[GA) M. Takeuchi, Extad(Sp R, μA)_??_Br(A/k), J. Algebra, 67 (1980), 436-475. 8)=[GA) M. Takeuchi, Introduction to √<Morita> theory, Proc. 17th Symp. Ring Theory, 1984, pp. 78-86. 9)=[GA) M. Takeuchi, Equivalences of categories of algebras, Comm. Algebra, 13 (1985), 1931-1976.
Right : [1] S. Eilenberg and G. M. Kelly, Closed categories, Proc. Conf. Categorical Algebra, La Jolla 1965, Springer-Verlag, 1966, pp. 421-562. [2] B. Pareigis, Morita equivalence of module categories with tensor products, Comm. Algebra, 9 (1981), 1455-1477. [3] D. Riffelmacher, Multiplication alteration and related rigidity properties of algebras, Pacific J. Math., 71 (1977), 139-157. [4]=[MA] M. Sweedler, Multiplication alteration by two-cocycles, Illinois J. Math., 15 (1971), 302-323. [5] [MA] M. Sweedler, Groups of simple algebras, Publ. Math. I. H. E. S., 44 (1975), 79-189. [6]=[GA] M. Takeuchi, Groups of algebras over A⊗A, J. Math. Soc. Japan, 29 (1977), 459-492. [7]=[GA] M. Takeuchi, Extad(Sp R, μA)≅Br(A/k), J. Algebra, 67 (1980), 436-475. [8]=[GA] M. Takeuchi, Introduction to √Morita theory, Proc. 17th Symp. Ring Theory, 1984, pp. 78-86. [9]=[GA] M. Takeuchi, Equivalences of categories of algebras, Comm. Algebra, 13 (1985), 1931-1976.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -