Published: 1987 Received: September 07, 1984Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) M. Bestvina, P. L. Bower, J. Mogilski and J. J. Walsh, Characterization of Hilbert space manifolds revisited, Topology Appl., 24 (1986), 53-69. 2) T. A. Chapman, Four classes of separable metric infinite-dimensional manifolds, Bull. Amer. Math. Soc., 76 (1970), 399-403. 3) D. W. Curtis, Boundary sets in the Hilbert cube, Topology Appl., 20 (1985), 201-221. 4) D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl., 22 (1986), 97-107. 5) D. W. Curtis, T. Dobrowolski and J. Mogilski, Some applications of the topological characterizations of the sigma-compact spaces l2f and ∑, Trans. Amer. Math. Soc., 284 (1984), 837-846. 6) C. H. Dowker, Topology of metric complexes, Amer. J. Math., 74 (1952), 555-577. 7) W. E. Haver, Mappings between ANR's that are fine homotopy equivalences, Pacific J. Math., 58 (1975), 457-461. 8) R. E. Heisey, Manifolds modelled on R∞ or bounded weak-* topologies, Trans. Amer. Math. Soc., 206 (1975), 295-312. 9) R. E. Heisey and H. Torunczyk, On the topology of direct limits of ANR's, Pacific J. Math., 93 (1981), 307-312. 10) D. W. Henderson, Z-sets in ANR's, Trans. Amer. Math. Soc., 213 (1975), 205-216. 11) D. W. Henderson and J. E. West, Triangulated infinite-dimensional manifolds, Bull. Amer. Math. Soc., 76 (1970), 655-660. 12) J. P. Henderson and J. J. Walsh, Examples of cell-like decompositions of the infinite-dimensional manifolds σ and ∑, Topology Appl., 16 (1983), 143-154. 13) S.-T. Hu, Theory of Retracts, Wayne State Univ. Press, Detroit, 1965. 14) J. Mogilski, Characterizing the topology of infinite-dimensional σ-compact manifolds, Proc. Amer. Math. Soc., 92 (1984), 111-118. 15) K. Sakai, Embeddings of infinite-dimensional manifold pairs and remarks on stability and deficiency, J. Math. Soc. Japan, 29 (1977), 262-280. 16) K. Sakai, On R∞-manifolds and Q∞-manifolds, Topology Appl., 18 (1984), 69-80. 17) K. Sakai, On R∞-manifolds and Q∞-manifolds, II: Infinite deficiency, Tsukuba J. Math., 8 (1984), 101-118. 18) K. Sakai, Combinatorial infinite-dimensional manifolds and R∞-manifolds, to appear in Topology Appl. 19) K. Sakai, Fine homotopy equivalences of simplicial complexes, Bull. Acad. Polon. Sci., 34 (1986), 89-97. 20) H. Torunczyk, A correction of two papers concerning Hilbert manifolds, Fund. Math., 125 (1985), 89-93. 21) M. M. Zaricinyi, Infinite-dimensional manifolds which arise from the direct limits of ANR's (in Russian), Uspekhi Mat. Nauk, 39 (1984), 153-154; English transl. in Russian Math. Surveys. 22) K. Sakai, Simplicial complexes triangulating infinite-dimensional manifolds, preprint.
Right : [1] M. Bestvina, P. L. Bower, J. Mogilski and J. J. Walsh, Characterization of Hilbert space manifolds revisited, Topology Appl., 24 (1986), 53-69. [2] T. A. Chapman, Four classes of separable metric infinite-dimensional manifolds, Bull. Amer. Math. Soc., 76 (1970), 399-403. [3] D. W. Curtis, Boundary sets in the Hilbert cube, Topology Appl., 20 (1985), 201-221. [4] D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl., 22 (1986), 97-107. [5] D. W. Curtis, T. Dobrowolski and J. Mogilski, Some applications of the topological characterizations of the sigma-compact spaces l2f and ∑, Trans. Amer. Math. Soc., 284 (1984), 837-846. [6] C. H. Dowker, Topology of metric complexes, Amer. J. Math., 74 (1952), 555-577. [7] W. E. Haver, Mappings between ANR's that are fine homotopy equivalences, Pacific J. Math., 58 (1975), 457-461. [8] R. E. Heisey, Manifolds modelled on R∞ or bounded weak-* topologies, Trans. Amer. Math. Soc., 206 (1975), 295-312. [9] R. E. Heisey and H. Torunczyk, On the topology of direct limits of ANR's, Pacific J. Math., 93 (1981), 307-312. [10] D. W. Henderson, Z-sets in ANR's, Trans. Amer. Math. Soc., 213 (1975), 205-216. [11] D. W. Henderson and J. E. West, Triangulated infinite-dimensional manifolds, Bull. Amer. Math. Soc., 76 (1970), 655-660. [12] J. P. Henderson and J. J. Walsh, Examples of cell-like decompositions of the infinite-dimensional manifolds σ and ∑, Topology Appl., 16 (1983), 143-154. [13] S. -T. Hu, Theory of Retracts, Wayne State Univ. Press, Detroit, 1965. [14] J. Mogilski, Characterizing the topology of infinite-dimensional σ-compact manifolds, Proc. Amer. Math. Soc., 92 (1984), 111-118. [15] K. Sakai, Embeddings of infinite-dimensional manifold pairs and remarks on stability and deficiency, J. Math. Soc. Japan, 29 (1977), 262-280. [16] K. Sakai, On R∞-manifolds and Q∞-manifolds, Topology Appl., 18 (1984), 69-80. [17] K. Sakai, On R∞-manifolds and Q∞-manifolds, II: Infinite deficiency, Tsukuba J. Math., 8 (1984), 101-118. [18] K. Sakai, Combinatorial infinite-dimensional manifolds and R∞-manifolds, to appear in Topology Appl. [19] K. Sakai, Fine homotopy equivalences of simplicial complexes, Bull. Acad. Polon. Sci., 34 (1986), 89-97. [20] H. Torunczyk, A correction of two papers concerning Hilbert manifolds, Fund. Math., 125 (1985), 89-93. [21] M. M. Zaricinyi, Infinite-dimensional manifolds which arise from the direct limits of ANR's (in Russian), Uspekhi Mat. Nauk, 39 (1984), 153-154; English transl. in Russian Math. Surveys. [22] K. Sakai, Simplicial complexes triangulating infinite-dimensional manifolds, preprint.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -