訂正日: 2006/08/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Right : [1] K. Noshiro, On the univalency of certain analytic functions, Journ. Fac. Sci. Hokkaido Imp. Univ. (1) 2, Nos. 1-2 (1934), pp. 89-101. [2] J. Dieudonné, Recherches sur quelques problèmes relatifs aux polynomes et aux fonctions bornées d'une variable complexe, Thèse de Paris, Ann. Sci. Ecole Norm. Sup. Vol. 48 (1931), pp. 248-358. [3] E. Sakai, On the multivalency of analytic functions, J. Math. Soc. Japan. vol. 2, Nos. 1-2 (1950), pp 105-113. [4] Z. Nehari, The radius of univalence of analytic functions, Amer. J. Math. vol. LXXI, No. 4 (1949). [5] We mean by ψ (z)⊂T that the set of values taken by ψ (z) in D belongs to the domain T. [6] The positive quantity Ω (α, T) depends only on α and T, and neither on the selection of the mapping function nor on that of the branch g(t) of the mapping function. See [1], foot-notes at p. 90. [7] G. Szegö, Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören, Math. Zeit. vol. 9 (1921), pp. 218-270. [8] P. R. Garabedian, Schwarz's lemma and the Szegö kernel function, Trans. Amer. Math. Soc. Vol. 67 (1949), pp. 1-35. [9] L. V. Ahlfors, Bounded analytic functions, Duke Math. J. vol. 14 (1947), pp. 1-14. [10] P. R. Garabedian, loc. cit. [11] S. Ozaki, Some remarks on the univalency and multivalency of functions, Sci. Rep. of Tokyo Bunrika Daigaku Nos. 31-32 (1934), p. 49. [12] A. W. Goodman, On the Schwarz-Christoffel transformation and p-valent functions, Trans. Amer. Math. Soc. vol. 68 (1950), p. 211. [13] S. Ozaki, On the theory of multivalent functions II, Sci. Rep. T.B.D. vol. 4, No. 77 (1941), p. 57. [14] K. Noshiro, On the theory of schlicht functions, Journ. Fac. Sci. Hokkaido Imp. Univ. (1) vol. 2, No. 3 (1934), pp. 129-155. [15] T. Umezawa, Analytic functions convex in one direction, J. Math. Soc. Japan Vol. 4, No. 2 (1952), pp. 194-202.