Published: 1989 Received: November 27, 1987Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) A. Ancona, Principe de Harnack a la frontiere et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier, 28 (1978) 169-213. 2) R. A. Hunt and R. L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc., 147 (1970), 507-527. 3) J. T. Kemper, A boundary Harnack principle for Lipschitz domains and the principle of positive singularities, Comm. Pure Appl. Math., 25 (1972), 247-255. 4) M. Nakai, The space of non-negative solutions of the equation Δu=Pu on a Riemann surface, Kodai Math. Sem. Rep., 12 (1960), 151-178. 5) M. Nakai and T. Tada, The distributions of Picard dimensions, Kodai Math. J., 7 (1984), 1-15. 6) J.-M. G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domain, Ann. Inst. Fourier, 28(1978), 147-167.
Right : [1] A. Ancona, Principe de Harnack a la frontiere et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier, 28 (1978) 169-213. [2] R. A. Hunt and R. L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc., 147 (1970), 507-527. [3] J. T. Kemper, A boundary Harnack principle for Lipschitz domains and the principle of positive singularities, Comm. Pure Appl. Math., 25 (1972), 247-255. [4] M. Nakai, The space of non-negative solutions of the equation Δu=Pu on a Riemann surface, Kôdai Math. Sem. Rep., 12 (1960), 151-178. [5] M. Nakai and T. Tada, The distributions of Picard dimensions, Kodai Math. J., 7 (1984), 1-15. [6] J.-M. G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domain, Ann. Inst. Fourier, 28 (1978), 147-167.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -