Published: 1989 Received: December 07, 1987Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) E. Bedford and B. A. Taylor, Variational properties of the complex Monge-Ampère equation I, Dirichlet principle, Duke Math. J., 45 (1978), 375-403. 2) E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1-44. 3) D. Burns, Curvature of Monge-Ampère foliation and parabolic manifolds, Ann. Math., 115 (1982), 349-373. 4) E. D. Dynkin, Markov Processes, Springer, 1965. 5) M. Fukushima, Dirichlet forms and Markov processes, North-Holland and Kodansha, 1980. 6) M. Fukushima, On holomorphic diffusions and plurisubharmonic functions, in “Geometry of Random Motion” Contemporary Mathematics, to appear. 7) M. Fukushima, On the continuity of plurisubharmonic functions along conformal diffusions, Osaka J. Math., 23 (1986), 69-75. 8) M. Fukushima and M. Okada, On conformal martingale diffusions and pluripolar set, J. Funct. Anal., 55 (1984), 377-388. 9) M. Fukushima and M. Okada, On Dirichlet forms for plurisubharmonic functions, Acta Math., 159 (1988), 171-214. 10) R. H. Greene and H. Wu, Function theory on manifolds which possesses a pole, Lecture Notes in Math., 699, Springer, 1979. 11) R. H. Greene and H. Wu, Gap theorems for non-compact Riemannian manifolds, Duke Math. J., 49 (1982), 731-756. 12) N. Mok, Y. T. Siu and S. T. Yau, The Poincaré-Lelong equation on complete Kähler manifolds, Comp. Math., 44 (1981), 183-218. 13) Y. T. Siu and S. T. Yau, Complete Kähler manifolds with non-positive curvature of faster than quadratic decay, Ann. Math., 105 (1977), 235-264. 14) W. Stoll, The Ahlfors-Weyl theorem of meromorphic maps on parabolic manifolds, Lecture Notes in Math., 981, Springer, 1983. 15) K. Takegoshi, A non-existence theorem for plurisubharmonic maps of finite energy, Math. Z., 192 (1986), 21-27. 16) K. Takegoshi, Energy estimates and Liouville theorems for harmonic maps, Max-Planck-Institut für Mathematik, preprint. 17) H. Wu, On a problem concerning the intrinsic characterization of Cn, Math. Ann., 246 (1979), 15-22.
Right : [1] E. Bedford and B. A. Taylor, Variational properties of the complex Monge-Ampère equation I, Dirichlet principle, Duke Math. J., 45 (1978), 375-403. [2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1-44. [3] D. Burns, Curvature of Monge-Ampère foliation and parabolic manifolds, Ann. Math., 115 (1982), 349-373. [4] E. D. Dynkin, Markov Processes, Springer, 1965. [5] M. Fukushima, Dirichlet forms and Markov processes, North-Holland and Kodansha, 1980. [6] M. Fukushima, On holomorphic diffusions and plurisubharmonic functions, in “Geometry of Random Motion” Contemporary Mathematics, to appear. [7] M. Fukushima, On the continuity of plurisubharmonic functions along conformal diffusions, Osaka J. Math., 23 (1986), 69-75. [8] M. Fukushima and M. Okada, On conformal martingale diffusions and pluripolar set, J. Funct. Anal., 55 (1984), 377-388. [9] M. Fukushima and M. Okada, On Dirichlet forms for plurisubharmonic functions, Acta Math., 159 (1988), 171-214. [10] R. H. Greene and H. Wu, Function theory on manifolds which possesses a pole, Lecture Notes in Math., 699, Springer, 1979. [11] R. H. Greene and H. Wu, Gap theorems for non-compact Riemannian manifolds, Duke Math. J., 49 (1982), 731-756. [12] N. Mok, Y. T. Siu and S. T. Yau, The Poincaré-Lelong equation on complete Kähler manifolds, Comp. Math., 44 (1981), 183-218. [13] Y. T. Siu and S. T. Yau, Complete Kähler manifolds with non-positive curvature of faster than quadratic decay, Ann. Math., 105 (1977), 235-264. [14] W. Stoll, The Ahlfors-Weyl theorem of meromorphic maps on parabolic manifolds, Lecture Notes in Math., 981, Springer, 1983. [15] K. Takegoshi, A non-existence theorem for plurisubharmonic maps of finite energy, Math. Z., 192 (1986), 21-27. [16] K. Takegoshi, Energy estimates and Liouville theorems for harmonic maps, Max-Planck-Institut für Mathematik, preprint. [17] H. Wu, On a problem concerning the intrinsic characterization of Cn, Math. Ann., 246 (1979), 15-22.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -