訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) S. Boyer, Shake-slice knots and smooth contractible 4-manifolds, Math. Proc. Cambridge Philos. Soc., 98 (1985), 93-106. 2) S. Boyer, Simply-connected 4-manifolds with a given boundary, Trans. Amer. Math. Soc., 298 (1986), 331-357. 3) S. Donaldson, The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Diff. Geom., 26 (1987), 397-428. 4) R. Fintushel and R.J. Stern, Constructing lens spaces by surgery on knots, Math. Z., 175 (1980), 33-51. 5) R. Fintushel and R.J. Stern, Pseudofree orbifolds, Ann. of Math., 122 (1985), 335-364. 6) M. Freedman, The topology of 4-manifolds, J. Duff. Geom., 17 (1982), 357-453. 7) S. Fukuhara, On an invariant of homology lens spaces, J. Math. Soc. Japan, 36 (1984), 259-277. 8) C. Gordon and R. Litherland, On the signature of a link, Invent. Math., 47 (1978), 53-69. 9) C. Gordon and J. Luecke, Knots are determined by their complements, preprint. 10) S. Kaplan, Constructing framed 4-manifolds with given almost framed boundaries, Trans. Amer. Math. Soc., 254 (1979), 237-263. 11) K. Kuga, Representing homology classes of S2×S2, Topology, 23 (1984), 133-137. 12) T. Lawson, Representing homology classes of almost definite 4-manifolds, Michigan Math. J., 34 (1987), 85-91. 13) Y. Matsumoto, On the bounding genus of homology 3-spheres, J. Fac. Sci. Univ. Tokyo, 29(1982), 287-318. 14) J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer, New York, 1973. 15) E. Moise, Affine structures on 3-manifolds, Ann. of Math., 56 (1952), 96-114. 16) L. Moser, Elementary surgery along a torus knot, Pacific J. Math., 38 (1971), 737-745. 17) P. Ribenboim, Algebraic numbers, Wiley-Interscience, New York-London-Sydney-Toronto, 1972. 18) D. Rolfsen, Knots and links, Publish or Perish Inc., Berkeley, 1976.
Right : [1] S. Boyer, Shake-slice knots and smooth contractible 4-manifolds, Math. Proc. Cambridge Philos. Soc., 98 (1985), 93-106. [2] S. Boyer, Simply-connected 4-manifolds with a given boundary, Trans. Amer. Math. Soc., 298 (1986), 331-357. [3] S. Donaldson, The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Diff. Geom., 26 (1987), 397-428. [4] R. Fintushel and R. J. Stern, Constructing lens spaces by surgery on knots, Math. Z., 175 (1980), 33-51. [5] R. Fintushel and R. J. Stern, Pseudofree orbifolds, Ann. of Math., 122 (1985), 335-364. [6] M. Freedman, The topology of 4-manifolds, J. Duff. Geom., 17 (1982), 357-453. [7] S. Fukuhara, On an invariant of homology lens spaces, J. Math. Soc. Japan, 36 (1984), 259-277. [8] C. Gordon and R. Litherland, On the signature of a link, Invent. Math., 47 (1978), 53-69. [9] C. Gordon and J. Luecke, Knots are determined by their complements, preprint. [10] S. Kaplan, Constructing framed 4-manifolds with given almost framed boundaries, Trans. Amer. Math. Soc., 254 (1979), 237-263. [11] K. Kuga, Representing homology classes of S2×S2, Topology, 23 (1984), 133-137. [12] T. Lawson, Representing homology classes of almost definite 4-manifolds, Michigan Math. J., 34 (1987), 85-91. [13] Y. Matsumoto, On the bounding genus of homology 3-spheres, J. Fac. Sci. Univ. Tokyo, 29 (1982), 287-318. [14] J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer, New York, 1973. [15] E. Moise, Affine structures on 3-manifolds, Ann. of Math., 56 (1952), 96-114. [16] L. Moser, Elementary surgery along a torus knot, Pacific J. Math., 38 (1971), 737-745. [17] P. Ribenboim, Algebraic numbers, Wiley-Interscience, New York-London-Sydney-Toronto, 1972. [18] D. Rolfsen, Knots and links, Publish or Perish Inc., Berkeley, 1976.