Published: 1990 Received: December 12, 1988Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor Emeritus Eiitiro Homma with respect
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) B. Beauzamy, Introduction to Banach spaces and their Geometry, North-Holland, 1985. 2) F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, Cambridge Univ. Press, 1971. 3) F. F. Bonsall and J. Duncan, Numerical ranges II, Cambridge Univ. Press, 1973. 4) M. Cho, Joint spectra of operators on Banach spaces, Glasgow Math. J., 28 (1986), 69-72. 5) M. Cho, Joint spectra of commuting normal operators on Banach spaces, Glasgow Math. J., 30 (1988), 339-345. 6) M. Cho, Hyponormal operators on uniformly convex spaces, to appear in Acta Sci. Math. Szeged. 7) M. Cho, Joint spectra of commuting pairs and uniform convexity, to appear in Rev. Roum. Math. Pures Appl. 8) M. Cho and M. Takaguchi, Some classes of commuting n-tuple of operators, Studia Math., 80 (1984), 245-259. 9) M. Cho and A. T. Dash, On the joint spectra of doubly commuting n-tuples of semi-normal operators, Glasgow Math. J., 26 (1985), 47-50. 10) M.-D. Choi and C. Davis, The spectral mapping theorem for joint approximate point spectrum, Bull. Amer. Math. Soc., 80 (1974), 317-321. 11) R. Curto, On the connectedness of invertible n-tuples, Indiana Univ. Math. J., 29 (1980), 393-406. 12) R. Curto, Fredholm and invertible n-tuples of operators, The deformation problem, Trans. Amer. Math. Soc., 266 (1981), 129-159. 13) R. Curto, Connection between Harte and Taylor spectra, Rev. Roum. Math. Pures Appl., 31(1986), 203-215. 14) H. R. Dowson, T. A. Gillespie and P. G. Spain, A commutativity theorem for hermitian operators, Math. Ann., 220 (1976), 215-217. 15) R. Harte, The spectral mapping theorem in several variables, Bull. Amer. Math. Soc., 78 (1972), 871-875. 16) K. Mattila, Normal operators and proper boundary points of the spectra of operators on Banach space, Ann. Acad. Sci. Fenn. AI. Math. Dissertations, 19 (1978). 17) K. Mattila, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Camb. Philos. Soc., 96 (1986), 483-493. 18) A. McIntosh and A. Pryde, A functional calculus for several commuting operators, Indiana Math. J., 36 (1987), 421-439. 19) A. McIntosh, A. Pryde and W. Ricker, Comparison of the joint spectra for certain classes of commuting operators, Studia Math., 88 (1987), 23-36. 20) A. McIntosh, Systems of operator equations and perturbation of spectral subspaces of commuting operators, Michigan Math. J., 35 (1988), 43-65. 21) S.-Y. Shaw, On numerical ranges of generalized derivations and related properties, J. Austral. Math. Soc. Ser. A, 36 (1984), 134-142. 22) Z. Slodkowski and W. Zelazko, On joint spectra of commuting families of operators, Studia Math., 50 (1974), 127-148. 23) J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal., 6 (1970), 172-191. 24) J. L. Taylor, The analytic functional calculus for several commuting operators, Acta Math., 125 (1970), 1-38. 25) F.-H. Vasilescu, On pairs of commuting operators, Studia Math., 62 (1978), 203-207. 26) V. Wrobel, Tensor products of linear operators in Banach spaces and Taylor's joint spectrum, J. Operator Theory, 16 (1986), 273-283. 27) V. Wrobel, Tensor products of linear operators in Banach spaces and Taylor's joint spectrum II, J. Operator Theory, 19 (1988), 3-24. 28) V. Wrobel, Joint spectra and joint numerical ranges for pairwise commuting operators in Banach spaces, Glasgow Math. J., 30 (1988), 145-153.
Right : [1] B. Beauzamy, Introduction to Banach spaces and their Geometry, North-Holland, 1985. [2] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, Cambridge Univ. Press, 1971. [3] F. F. Bonsall and J. Duncan, Numerical ranges II, Cambridge Univ. Press, 1973. [4] M. Cho, Joint spectra of operators on Banach spaces, Glasgow Math. J., 28 (1986), 69-72. [5] M. Cho, Joint spectra of commuting normal operators on Banach spaces, Glasgow Math. J., 30 (1988), 339-345. [6] M. Cho, Hyponormal operators on uniformly convex spaces, to appear in Acta Sci. Math. Szeged. [7] M. Cho, Joint spectra of commuting pairs and uniform convexity, to appear in Rev. Roum. Math. Pures Appl. [8] M. Cho and M. Takaguchi, Some classes of commuting n-tuple of operators, Studia Math., 80 (1984), 245-259. [9] M. Cho and A. T. Dash, On the joint spectra of doubly commuting n-tuples of semi-normal operators, Glasgow Math. J., 26 (1985), 47-50. [10] M. -D. Choi and C. Davis, The spectral mapping theorem for joint approximate point spectrum, Bull. Amer. Math. Soc., 80 (1974), 317-321. [11] R. Curto, On the connectedness of invertible n-tuples, Indiana Univ. Math. J., 29 (1980), 393-406. [12] R. Curto, Fredholm and invertible n-tuples of operators, The deformation problem, Trans. Amer. Math. Soc., 266 (1981), 129-159. [13] R. Curto, Connection between Harte and Taylor spectra, Rev. Roum. Math. Pures Appl., 31 (1986), 203-215. [14] H. R. Dowson, T. A. Gillespie and P. G. Spain, A commutativity theorem for hermitian operators, Math. Ann., 220 (1976), 215-217. [15] R. Harte, The spectral mapping theorem in several variables, Bull. Amer. Math. Soc., 78 (1972), 871-875. [16] K. Mattila, Normal operators and proper boundary points of the spectra of operators on Banach space, Ann. Acad. Sci. Fenn. AI. Math. Dissertations, 19 (1978). [17] K. Mattila, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Camb. Philos. Soc., 96 (1986), 483-493. [18] A. McIntosh and A. Pryde, A functional calculus for several commuting operators, Indiana Math. J., 36 (1987), 421-439. [19] A. McIntosh, A. Pryde and W. Ricker, Comparison of the joint spectra for certain classes of commuting operators, Studia Math., 88 (1987), 23-36. [20] A. McIntosh, Systems of operator equations and perturbation of spectral subspaces of commuting operators, Michigan Math. J., 35 (1988), 43-65. [21] S. -Y. Shaw, On numerical ranges of generalized derivations and related properties, J. Austral. Math. Soc. Ser. A, 36 (1984), 134-142. [22] Z. Slodkowski and W. Zelazko, On joint spectra of commuting families of operators, Studia Math., 50 (1974), 127-148. [23] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal., 6 (1970), 172-191. [24] J. L. Taylor, The analytic functional calculus for several commuting operators, Acta Math., 125 (1970), 1-38. [25] F. -H. Vasilescu, On pairs of commuting operators, Studia Math., 62 (1978), 203-207. [26] V. Wrobel, Tensor products of linear operators in Banach spaces and Taylor's joint spectrum, J. Operator Theory, 16 (1986), 273-283. [27] V. Wrobel, Tensor products of linear operators in Banach spaces and Taylor's joint spectrum II, J. Operator Theory, 19 (1988), 3-24. [28] V. Wrobel, Joint spectra and joint numerical ranges for pairwise commuting operators in Banach spaces, Glasgow Math. J., 30 (1988), 145-153.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -